HW 5 Solution 1 Z (7.1 Problem 20) 2 2 (x2 − 2x)(x3 − 3x2 + 3) 3 dx Solution: Let u = x3 −3x2 +3. Then du = (3x2 −6x)dx and du = (x2 −2x)dx. 3 R R 2 5 5 2 du 2 So (x − 2x)(x3 − 3x2 + 3) 3 dx = u 3 3 = 13 · 53 u 3 + C = 15 u 3 + C = 5 1 (x3 − 3x2 + 3) 3 + C. 5 x2 − 1 dx x3 − 3x + 1 Z (7.1 Problem 22) 3 Solution: Let u = x3 − 3x + 1. Then du = (3x2 − 3)dx and du = (x2 − 1)dx. 3 R x2 −1 R R R 1 So x3 −3x+1 dx = x3 −3x+1 · (x2 − 1)dx = u1 · du = 13 u1 du = 31 ln |u| + C = 3 1 ln |x3 − 3x + 1| + C. 3 Z sec2 (x)etan(x) dx (7.1 Problem 28) Solution: Then du = sec2 (x)dx. So R tan(x) 2Let u = Rtan(x). e sec (x)dx = eu du = eu + C = etan(x) + C. 4 5 R sec2 (x)etan(x) dx = Z √ ln x (7.1 Problem 36) 1 + ln x dx x R√ Solution: Let u = 1+ln x. Then du = x1 dx and ln x = u−1 So 1 + ln x lnxx dx = R√ R R R √ 3 1 1 1 + ln x · ln x · x1 dx = u · (u − 1)du = u 2 · (u − 1)du = (u 2 − u 2 )du = 3 5 3 2 52 u − 32 u 2 + C = 25 (1 + ln x) 2 − 23 (1 + ln x) 2 + C. 5 Z 2 (7.1 Problem 44) √ x5 x3 + 2dx 1 Solution: Let u = x3 + 2. Then du = 3x2 dx, du = x2 dx and x3 = u − 2. 3 3 Also x = 1 gives uR= 1 √+ 2 = 3 and x R= 2 gives u = 23 + 2R= 8 + 2 = 10. So R 2 5√ √ 1 10 2 10 x x3 + 2dx = 1 x3 x3 + 2x2 dx = 3 (u − 2) u du = 13 3 (u − 2)u 2 du = 3 1 10 10 R 5 3 1 1 2 25 2 32 2 52 4 32 2 1 10 2 − 2u 2 )du = (u ( u − 2 · u ) = ( u − u ) · 10 2 − 49 · = ( 15 3 3 3 5 3 15 9 3 3 3 5 3 5 3 5 3 2 2 2 10 2 ) − 15 · 3 2 − 49 · 3 2 = 15 · 10 2 − 49 · 10 2 − 15 · 3 2 + 49 · 3 2 . 6 Z (7.1 Problem 52) 0 π 3 sin x dx cos2 (x) Solution: Let u = cos(x). Then du = − sin(x)dx and sin(x)dx = −du. Also x = 0 gives u = cos(0) = 1 and x = π3 gives u = cos( π3 ) = 12 . So MATH 1760 : page 1 of 2 HW 5 Solution Rπ 3 0 7 1 1 sin x dx cos2 (x) MATH 1760 page 2 of 2 = Rπ 3 0 1 cos2 (x) · sin(x)dx = R1 1 (−1)du 1 u2 2 =− R1 1 du 1 u2 2 1 2 = u1 = 1 1 1 2 − = 2 − 1 = 1. Z (7.2 Problem 10) 2x2 e−x dx R −x Solution: RLet u = 2x2 and dv = e−x dx. Then du = 4xdx and v = dx = R R e −x −x 2 −x 2 −x −x 2 −x −e . So 2x e R dx = 2x (−e ) − (−e ) · 4xdx = −2x e + 4 xe dx. Next we find xe−x dx using integration R by parts again. RLet u = x and dv = eR−x dx. Then du = dx Rand v = e−x dx = −e−x . So xe−x dx = x(−e−x ) − (−eR−x )dx = −xe−x + e−x dx R= −xe−x − e−xR+ C. Combining 2xR2 e−x dx = −2x2 e−x + 4 xe−x dx and xe−x dx = −xe−x − e−x + C, we have 2x2 e−x dx = −2x2 e−x − 4xe−x − 4e−x + C. 8 Z (7.2 Problem 12) x2 ln xdx R Solution: Let u = ln(x) and dv = x2 dx. Then du = x1 dx and v = x2 dx = R R R 3 R 2 3 3 x3 . So x2 ln xdx = ln(x) · x2 dx = ln(x) · x3 − x3 · x1 dx = x ln(x) − x3 dx = 3 3 3 x3 ln(x) − x9 + C. 3 9 Z π 4 (7.2 Problem 18) 2x cos(x)dx 0 R Let Ru = 2x and dv = cos(x)dx. Then du = 2dx and v = cos(x)dx R R = sin(x). So 2x cos(x)dxdx = 2x sin(x) − sin(x) · 2dx = 2x sin(x) − 2 sin(x)dx = 2x sin(x) + 2 cos(x) + C. π Rπ Thus 04 2x cos(x)dx = 2x sin(x) + 2 cos(x)04 = 2 · π4 sin( π4 ) + 2 cos( π4 ) − (2 · √ π 0 sin(0) + 2 cos(0)) = π2 · √12 + 2 · √12 − 2 = 2√ 2 − 2. We have used + 2 π π 1 sin( 4 ) = cos( 4 ) = √2 and cos(0) = 1.
© Copyright 2026 Paperzz