MATH 2263 Spring 2012 Quiz 7(Mar. 29, 2012) Name: Student ID #: Section #: 12 / 14 ? Please show your work. 1. (5 points) Please evaluate the integral x − 2y dA R 3x − y by making an appropriate change of variables. Here R is the parallelogram encolosed by the lines x − 2y = 0, x − 2y = 4, 3x − y = 1, and 3x − y = 9. Answer: Set ZZ u = x − 2y, v = 3x − y. (1) Then we have 2 3 1 1 x = − u + v, y = − u + v, 5 5 5 5 and hence the Jacobian ∂(x, y) = ∂(u, v) ∂x ∂u ∂y ∂u ∂x ∂v ∂y ∂v 1 − = 53 − 5 2 5 1 5 1 = . 5 We also know that the region S on uv-plane that corresponds to R is S = (u, v) ∈ R2 : 0 ≤ u ≤ 4, 1 ≤ v ≤ 9 . Hence we have ZZ R u ∂(x, y) dA v ∂(u, v) Z ZS u = dA S 5v Z 9Z 4 u = du dy 1 0 5v Z 9 8 = dy 5v 1 8 = (ln 9 − ln 1) 5 16 ln 3 . = 5 x − 2y dA = 3x − y ZZ 1 2 2. (5 points) Please Evaluate R C F · dr, where F(x, y, z) = (x + y) i + (y + z) j + (x + z) k, C : r(t) = t i + 2t j + t2 k, 0 ≤ t ≤ 1. Answer: Along the curve C, we have F = ht + 2t, 2t + t2 , t + t2 i = h3t, t2 + 2t, t2 + ti r0 = h1, 2, 2ti. Hence Z Z 1 h3t, t2 + 2t, t2 + ti · h1, 2, 2ti dt F · dr = C 0 Z 1 3t + 2t2 + 4t + 2t3 + 2t2 dt = 0 Z = 1 2t3 + 4t2 + 7t dt 0 1 4 4 3 7 2 t + t + t 2 3 2 16 = . 3 1 = 0
© Copyright 2026 Paperzz