Integrating Rational Functions Solutions Practice Problems: Evaluate the following Integrals Z (1) Z (2) Solutions: Z (1) Evaluate 4x dx (x − 1)2 (x + 1) Z x2 dx x2 − 1 Z x3 + 10x2 + 3x + 36 dx (x − 1)(x2 + 4)2 (3) x2 + 4 dx 3x3 + 4x2 − 4x (4) 4x dx (x − 1)2 (x + 1) Observation: The function 4x is a proper rational function. Find the PFD and then integrate. (x − 1)2 (x + 1) 4x A B C = + + (x − 1)2 (x + 1) x − 1 (x − 1)2 x+1 4x = A(x − 1)(x + 1) + B(x + 1) + C(x − 1)2 2 2 4x = A(x − 1) + Bx + B + C(x − 2x + 1) 2 x = 1 : 4 = 2B → B = 2 x = −1 : −4 = 4C → C = −1 2 0x + 4x + 0 = (A + C)x + (B − 2C)x + (−A + B + C). Equating the coefficients of the x2 term gives 0 = A + C −→ A = −C = 1. Therefore Z 2 −1 1 + + dx 2 x − 1 (x − 1) x+1 2 = ln |x − 1| − − ln |x + 1| + C. x−1 4x dx = (x − 1)2 (x + 1) Z Observation: Use the substitution u = x − 1 to get Z 2 2 dx = − + C. (x − 1)2 x−1 See solution video Z x2 + 4 (2) Evaluate dx 3 3x + 4x2 − 4x x2 + 4 x2 + 4 Observation: The function = is a proper rational function. Find the 3x3 + 4x2 − 4x x(x + 2)(3x − 2) PFD and then integrate. x2 + 4 A B C = + + x(x + 2)(3x − 2) x x + 2 3x − 2 x2 + 4 = A(x + 2)(3x − 2) + Bx(3x − 2) + Cx(x + 2) 1 Calculus II Resources Integration Techniques Corresponding to each linear term we choose an ‘intelligent’ choice of x: x = 0 : 4 = A(−4) −→ A = −1 1 x = −2 : 8 = B(16) −→ B = 2 4 2 8 5 2 x= : +4=C −→ C = . 3 9 3 3 2 Therefore Z x2 + 4 dx = 3x3 + 4x2 − 4x 1/2 5/2 −1 + + dx x x + 2 3x − 2 1 51 = − ln |x| + ln |x + 2| + ln |3x − 2| + C. 2 23 Z Observation: Use the substitution u = 3x − 2 ( 31 du = dx) to get Z 51 5/2 dx = ln |3x − 2| + C. 3x − 2 23 See solution video Z x2 dx (3) Evaluate x2 − 1 x2 is NOT a proper rational function. We need to use a polynomial x2 − 1 long division to rewrite f as the sum of a polynomial and a proper rational function. 1 2 2 x −1 x − x2 + 1 Observation: The function f (x) = 1 This gives x2 = (x2 − 1) + 1 so that x2 1 =1+ 2 . 2 x −1 x −1 Note: Alternatively, one can add zero to the numerator to find x2 − 1 + 1 1 x2 = =1+ 2 . 2 −1 x −1 x −1 x2 We now find the PFD of the proper rational function 1 x2 −1 = 1 (x+1)(x−1) . A B 1 = + (x + 1)(x − 1) x+1 x−1 1 = A(x − 1) + B(x + 1) Corresponding to each linear term we choose an ‘intelligent’ choice for x: x = 1 : 1 = B(2) −→ B = 1 2 1 x = −1 : 1 = A(−2) −→ A = − . 2 Therefore 2 Calculus II Resources Integration Techniques Z x2 dx = 2 x −1 −1/2 1/2 + dx x+1 x−1 1 1 = x − ln |x + 1| + ln |x − 1| + C. 2 2 Z 1+ See solution video Z 3 x + 10x2 + 3x + 36 dx (4) Evaluate (x − 1)(x2 + 4)2 x3 + 10x2 + 3x + 36 is a proper rational function. Find the PFD and then Observation: The function (x − 1)(x2 + 4)2 integrate. x3 + 10x2 + 3x + 36 A Bx + C Dx + E = + 2 + 2 (x − 1)(x2 + 4)2 x−1 x +4 (x + 4)2 x3 + 10x2 + 3x + 36 = A(x2 + 4)2 + (Bx + C)(x − 1)(x2 + 4) + (Dx + E)(x − 1) 3 2 4 3 x + 10x + 3x + 36 = (A + B)x + (C − B)x + (8A + 4B − C + D)x x = 1 : 50 = A(25) → A = 2 2 + (−4B + 4C − D + E)x + (16A − 4C − E) Equating the corresponding coefficients leads to a system of equations: x4 : A + B = 0 −→ B = −A = −2 x3 : C − B = 1 −→ C = 1 + B = −1 x2 : 8A + 4B − C + D = 10 −→ 8(2) + 4(−2) − (−1) + D = 10 −→ D = 1 x1 : − 4B + 4C − D + E = 3 0 x : 16A − 4C − E = 36 −→ 16(2) − 4(−1) − E = 36 −→ E = 0 Therefore Z x3 + 10x2 + 3x + 36 dx = (x − 1)(x2 + 4)2 −2x − 1 x 2 + 2 + 2 dx x−1 x +4 (x + 4)2 Z Z Z Z 2 2x 1 x = dx − dx − dx + dx x−1 x2 + 4 x2 + 4 (x2 + 4)2 x 1 1 1 = 2 ln |x − 1| − ln |x2 + 4| − arctan − + C. 2 2 2 x2 + 4 Z Observation: Use the substitution u = x2 + 4 to evaluate the second and fourth integrals. In the third integral we have used the common antiderivative Z x 1 1 + C. dx = arctan 2 2 x +a a a See solution video 3
© Copyright 2026 Paperzz