1 EXPERIMENTB4:CHEMICALEQUILIBRIUM LearningOutcomes Uponcompletionofthislab,thestudentwillbeableto: 1) Analyzetheabsorbancespectrumofasample. 2) Calculatetheequilibriumconstantforachemicalreactionusingdata obtainedbyspectrophotometricmethods. Introduction ElectromagneticSpectrum Awaveisoftendefinedasa“vibratingdisturbancebywhichenergyistransmitted”. Anelectromagneticwaveisatypeofwavethathasassociatedwithitanelectrical fieldandamagneticfieldthatareperpendiculartooneanother.Lightthatcanbe seenbythenakedeye,alsoknownasvisiblelight,isanexampleofan electromagneticradiation.Wavessuchasradiowaves,microwaves,orx-raysare alsoexamplesofelectromagneticradiation. Mathematically,wavessuchaselectromagneticwavesareknownaspropagating waves,andcanberepresentedbyarepeatingorperiodicfunctionuchassinewave. Therearethreecharacteristicpropertiesassociatedwiththesekindsofwaves: 1. Wavelength(λ)-thedistancebetweenidenticalpointsonsuccessivewaves 2. Frequency(ν)-thenumberofwavesthatpassthroughaparticularpointina second 3. Amplitude-theheightofthepeakortroughofawave. Whatmakesoneelectromagneticwavedifferentfromanotherwaveisthe wavelengthandfrequencyassociatedwithit.Thesetwoareinverselyrelatedto eachaccordingtotheformula: c=νλ,wherecisthespeedoflight=3.00×108m/s Theelectromagneticspectrum(Figure1)isanarrangementofthedifferentkindsof wavesintheorderofincreasingwavelengths(ordecreasingfrequencies). 2 Wavelength(nm) 10-2 100 Gamma X-ray ray 1020 400nm 1018 102 U V 1016 104 Infrare d 1014 106 Micro- wave 1012 1010 1012 Radiowaves 1010 Frequency(s 108 106 -1) 108 700nm FIGURE1 Asmentionedabove,electromagneticradiationatcertainwavelengths,isvisibleto thehumaneye,rangingfromredlightwithlongerwavelengths(~700nm)toviolet lightwithshorterwavelengths(~400nm). Asolutioncontainingasubstancethatabsorbslightinthevisibleregionofthe electromagneticspectrumwillappearcoloredtotheeye.Thecolorthatisobserved dependsonthewavelengthoftheradiationthatsubstanceabsorbs.Forinstance,if youlookatasolutionofvitaminB2(alsoknownasriboflavin)underawhitelight,it appearsyellowincolor.AsolutionofvitaminB2absorbsthemaximumlightata wavelengthof450nm.FromFigure1,lightwithawavelengthof450nm correspondstoviolet-bluelight.Themoleculesofriboflavinthereforeareabsorbing theviolet-bluepartsofthevisiblelight,andalltherestofthevisiblelightwillnotbe absorbedbutinsteadtransmittedthroughthesolution.Theriboflavinisessentially removingtheblue-violetlightfromthewhitelightandasaresultthecoloryou observeforriboflavinisamixtureoftherestofthe“un-absorbed”colors.Ingeneral thecolorofasolutionthatcanbeobservedbythehumaneyeisthe“complement”of thecolorofthelightitabsorbs.Thefollowing“color-wheel”isarepresentationof complementarycolors(Figure2). 3 Violet 400-420nm Red 630-720nm Deepblue 420-450nm Orange 580-630nm Lightblue 450-490nm Yellow 545-580nm Green Yellow-green 490-530nm 530-545nm FIGURE2 Inthecaseofriboflavinsincethesolutionabsorbedlightwithawavelengthof450 nmcorrespondingtobluelight,itshouldappeartobeyellowtoyellow-green,which arethecomplementarycolors.Andindeed,asolutionofriboflavindoesappeartobe yellowincolor. Spectrophotometry Aspectrophotometerisaninstrumentusedtomeasuretheamountoflightthata sampleabsorbs.Thismethodisknownasspectrophotometry.Theinstrument operatesbypassingabeamoflightthroughasampleandmeasuringtheintensityof thetransmittedlightreachingadetector.Themostbasicarrangementofa spectrophotometerisshowninFigure3. Sourceof light Sample FIGURE3 Light detector However,asdiscussedbeforedifferentsamplesabsorblightofdifferent wavelengths.Theamountoflightabsorbedbythesamplewilldependonthe wavelengthofthelight.Inordertoselectlightofaparticularwavelengthtoshineon thesample,thelightmustpassthroughamonochromator,whichisessentiallya filterthatallowsaselectedwavelengthoflighttopassthroughthesample. Whenanalyzingasampleforthefirsttime,itisunlikelythatonewillknowthe wavelengthatwhichthesampleabsorbsmaximumlight.Thereforethecomplete absorbancespectrumofthesamplemustfirstbedetermined.Theabsorbance spectrumshowshowtheabsorbanceoflightdependsuponthewavelengthofthe light.Thespectrumisaplotofabsorbance(y-axis)versuswavelength(x-axis).The 4 wavelengthatwhichtheabsorbanceisthehighestisoftendenotedasλmax.Theλmax ischaracteristicofeachcompoundandprovidesinformationontheelectronic structureoftheanalyte. Theabsorbanceofaparticularsolutiondependsonanotherimportantparameter: theamountoftheanalytepresentinthesolution. Beer’slawstatesthattheabsorbanceisdirectlyproportionaltothenumberof moleculesperunitvolumeoflight-absorbingcompoundthroughwhichthelight passes.ThemathematicalformcorrespondingtoBeer’slawisgivenby: A=ε×c×l Thevariablesintheaboveequationare: • A=absorbanceofthesample(thisisaunit-lessquantity) • c=concentrationoftheanalyte(typicallyinunitsofMolarityormoles/liter) • ε=molarextinctioncoefficient(unitsofMolarity-1cm-1) • l=pathlengththroughwhichlighttravels Thepathlengthdependsonthespectrophotometerandthesampleholderor cuvettebeingusedandistypically1.00cmformostinstruments.Theextinction coefficientεthatisusedintheaboveequationisaconstantforaparticularsample ataparticularwavelength.Theextinctioncoefficientforseveralsubstanceshas beenexperimentallydetermined. ChemicalEquilibrium Inthisexperiment,theanalyticalmethodofspectrophotometrydescribedinthe precedingsectionwillbeusedtoexaminethechemicalequilibriumofaparticular reaction.Asshouldbeevidentfromtheearlierdiscussion,inordertousethis 5 analyticalmethod,thechemicalsubstancesstudiedmustabsorblightinthevisible regionoftheelectromagneticspectrum. Thereactionthatwillbestudiedisbetweenaqueoussolutionsoftheiron(III)ion (Fe3+)andthiocyanateion(SCN−).Theionicequationforthereactionandthe expressionfortheequilibriumconstantaregivenbelow. 3+ − Feaq + SCN aq ⇔ Fe(SCN) 2+ aq [Fe(SCN) 2+ ]eq KC = 3+ − [Fe ]eq [SCN ]eq Atthewavelengthofmaximumabsorbance,λmax,themolarextinctioncoefficient,ε, fortheproduct,Fe(SCN)2+,is6120M-1cm-1.Sincetheinitialconcentrationsofthe € reactantsareknownandtheproductconcentrationisrelatedtoitsabsorbance,the methodofspectophotometrycanbeusedtodeterminetheequilibriumconstantfor thisreaction. AssumethattheinitialconcentrationofFe3+isAandthatofCNS−isB.Thefollowing tabledescribeshowtheconcentrationsofallionsatequilibriumcanbedetermined. Sincetheionsareallina1:1stoichiometricrelationshipwitheachother,the amountofoneoftheionsconsumedintermsofconcentration(-x)willbethe sameamountastheotherionconsumedandwillresultinanequalamountof productbeingformed(+x). Fe3+ + SCN− ⇔ Fe(SCN)2+ Initialconcentrations A B 0 € -x Amountreactedtoreachequilibrium -x +x Equilibriumconcentrations A-x B-x x x KC = (A − x)(B − x) Since“A”and“B”areknownquantities,inordertodeterminetheequilibrium constantKC,itisnecessarytodeterminethechangeinconcentration“x”.Fortuntely, € thechangeinconcentrationisequaltotheequilibriumconcentrationofthe complex,Fe(SCN)2+. Theequilibriumconcentrationofthecomplex,Fe(SCN)2+,canbedeterminedby measuringitsabsorbanceatλmaxandemployingBeer’slaw: 6 A ε×l ε = 6120M −1cm −1 l = 1cm Thevalueof“l”(thepathlength)isspecifictothespectrophotometer.The spectrophotometersusedinthislaboratoryhaveapathlengthof1.00cm. € C=x= ExperimentalDesign 7 0.00200MaqueoussolutionsofFe3+andSCN−areprovided.Thesesolutionsare preparedin0.50MHNO3.Differentinitialconcentrationsofthesetwosolutionswill becombinedtoformtheFe(SCN)2+complex.Theabsorbanceoftheequilibrium mixturewillbemeasuredatλmaxusingaspectrophotometer. Theλmaxforthecomplex,Fe(SCN)2+,mustfirstbedetermined.Inordertodothis, thecompleteabsorbancespectrumofthecomplex(from370nmto700nm)must beobtained. ReagentsandSupplies 0.00200MFe3+,0.00200MSCN−,0.50MHNO3 Spectrophotometer,cuvettes (SeepostedMaterialSafetyDataSheets) Procedure 8 PART1:DETERMINATIONOFλMAXFORFe(SCN)2+ 1. Obtaintwocuvettesandaspectrophotometer.Powerupthespectrophotometer andallowtheinstrumenttowarmupfor10minutes.Theinstructorwill demonstratetheproperuseofthespectrophotometer. 2. Inalargetesttubecombine4.00mlofFe3+and3.00mlofSCN−.Thoroughlymix thecontentsandallowthemixturetoequilibrate(~5minutes). 3. Fillonecuvettewith0.50MHNO3(thiswillbethe“blank”)andthesecond cuvettewiththeFe(SCN)2+complexpreparedinstep2(thiswillbethe “sample”). 4. Wipethesidesofthecuvetteswithkimwipesandmakesurethereareno smudgesorfingerprints. 5. Setthewavelengthofthespectrophotometerto370nm. 6. Ensurethatthereisnosampleinthesamplecompartmentandthatthelidtothe compartmentisclosed.Setthespectrophotometertotransmittancemode.Using theappropriatecontrols,adjustthetransmittancetozero. 7. Placethecuvettecontainingthe“blank”insidethesamplecompartment,align theguidemarkonthecuvettewiththeguidemarkatthefrontofthesample compartment,andclosethelid.Setthespectrophotometertoabsorbancemode. Usingtheappropriatecontrolsadjusttheabsorbancereadingtozero. 8. Nowplacethecuvettecontainingthe“sample”insidethesamplecompartment, aligntheguidemarkonthecuvettewiththeguidemarkatthefrontofthe samplecompartment,closethelidandrecordtheabsorbance. 9. Changethewavelengthto380nmandthenrepeatSteps6through8.Continue thisprocessin10nmincrementsofthewavelength,untilabsorbancevalues havebeenrecordedat700nm. 10. Emptythecontentsofthecuvettesintoalargebeakerlabeledas“Waste”.Rinse andcleanthecuvettes.Disposeallthereagentsinanappropriatelabeledwaste containerprovidedbytheinstructor 11. Plotagraphofabsorbance(y-axis)vs.wavelength(x-axis).Fromtheplot determinethewavelengthatwhichtheabsorbancemaximumisfound.This wavelengthwillbeusedforallsubsequentmeasurements. 9 PART2:DETERMINATIONOFKCFORTHEREACTIONBETWEENFe3+ANDSCN− 1. Obtainaspectrophotometerandturnthepoweronandallowtheinstrumentto warmupforatleast10minutes. 2. Obtainninelargetesttubesandnumberthemfrom1to9. 3. CombineFe3+andSCN−ineachofthetesttubesaccordingtothefollowingtable. Thesewillbethe“sample”testtubes.Thoroughlymixthecontentsafter combiningthetwosolutionsandallowtheresultingmixturetoequilibrateforat leastfiveminutes. SolutionNumber Fe3+(mL),SolutionA SCN−(mL),SolutionB 1 0.50 3.00 2 1.00 2.50 3 1.25 2.25 4 1.50 2.00 5 1.75 1.75 6 2.00 1.50 7 2.25 1.25 8 2.50 1.00 9 3.00 0.50 4. Measurethetemperatureoftheequilibriummixture.Thetemperatureisnot usedinanyofthecalculations.Butequilibriumconstantvaluesarealways reportedataparticulartemperatureasthevaluechangeswithtemperature. 5. Inanothercuvetteobtainabout3.50mLofnitricacid.Thiswillserveasthe “blank”. 6. SetthewavelengthofthespectrophotometertothevaluedeterminedfromPart 1oftheexperiment.Calibratethespectrophotometerusingthemethod describedinPart1:Steps6&7. 7. Recordtheabsorbancevaluesofeachoftheninesamples(usethemethod describedinPart1(Step8). 8. Disposeallthereagentsinanappropriatelabeledwastecontainerprovidedby theinstructor. 10 DataTable PART1:DETERMINATIONOFλMAXFORFe(SCN)2+ Wavelength(nm) 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 Absorbance 11 PART2:DETERMINATIONOFKCFORTHEREACTIONBETWEENFe3+ANDSCN− Solution Absorbance 1 2 3 4 5 6 7 8 9 Temperatureoftheequilibriummixture= DataAnalysis 12 PART1:DETERMINATIONOFλMAXFORFe(SCN)2+ 1. Drawagraphofabsorbance(y-axis)vs.wavelength(nm). 2. Fromtheplot,identifythewavelengthatwhichthemaximumabsorbance occurs.Therewillbetwoabsorbancemaximainthisspectrum.Usethelargerof thetwowavelengthsforallsubsequentmeasurements. GRAPH Theλ maxforFe(SCN)2+wasfoundtobe= 13 PART2:DETERMINATIONOFKCFORTHEREACTIONBETWEENFe3+ANDSCN− Thenetionicequationandtheexpressionfortheequilibriumconstantforthe reactionbetweenFe3+andSCN−isgivenby: 3+ − Feaq + SCN aq ⇔ Fe(CNS) 2+ aq [Fe(CNS) 2+ ]eq KC = [Fe 3+ ]eq [CNS − ]eq Asmentionedbefore,iftheinitialconcentrationofFe3+isAandthatofCNS−isB, € thenthefollowingtabledescribestheequilibriumprocess. Fe3+ + SCN− ⇔ Fe(SCN)2+ Initialconcentrations A B 0 € -x Amountreactedtoreachequilibrium -x +x Equilibriumconcentrations A-x B-x x x KC = (A − x)(B − x) Theequilibriumconcentrationofthecomplex,Fe(SCN)2+,canbedeterminedfrom itsabsorbanceatλmaxandemployingBeer’slaw. € A C=x= ε×l ε = 6120M −1cm −1 l = 1cm € 1. FirsttheinitialconcentrationsofFe3+andSCN−mustbedeterminedforeachof thesixreactionconditions. Forinstance,insample1(0.50mLofFe3++3.00mLofSCN−): 0.50mL × 0.00200M = 0.000286M ConcentrationofFe3+inthemixture= 3.50mL 3.00mL × 0.00200M = 0.00171M ConcentrationofSCN−inthemixture= 3.50mL € € 14 DeterminetheconcentrationsofFe3+andSCN−inallthesamplesinthesame manner. SolutionNumber Fe3+(mL) [Fe3+],M=A SCN−(mL) [SCN−],M=B 1 0.50 0.000286 3.00 0.00171 2 1.00 2.50 3 1.25 2.25 4 1.50 2.00 5 1.75 1.75 6 2.00 1.50 7 2.25 1.25 8 2.50 1.00 9 3.00 0.50 2. Determinetheconcentrationofthecomplex,Fe(SCN)2+,foreachofthesix solutionsfromtheabsorbancevalue. A Solution Absorbance = x = [Fe(SCN)2+],M= 6120 1 2 3 4 5 6 7 8 9 € 15 3. CalculatetheequilibriumconstantKCforeachreactionusingtheformula: x KC = (A − x)(B − x) Solution KC € 1 2 3 4 5 6 7 8 9 AVERAGE STANDARDDEVIATION NOTE:Equilibriumconstantvaluesaretemperaturedependent.Besuretomeasure thetemperatureofthesolutionandreporttheaveragevalueoftheequilibrium constantatthespecifictemperatureatwhichtheexperimentwasconducted. 16 Result Theequilibriumconstant,KC,forthereactionbetweenaqueoussolutionsofFe3+and SCN−,whichresultedinthecomplexFe(SCN)2+,wasfoundtobe(specifythe temperature):
© Copyright 2026 Paperzz