MATH 300, ANSWER KEY TO PROBLEM SET 1 1.1.10. 2 2 2 2+i 2+i −1 − 8i 6 − 17i 36 − 172 − 2 · 6 · 17i = = · = = 6i − (1 − 2i) −1 + 8i −1 − 8i 65 652 = −253 204 − i 4225 4225 1.1.20 4 (a) iz = 4 − zi ⇒ 2iz = 4 ⇒ z = 2i = −2i (b) z = (1 − 5i) (1 − z) = 1 − 5i − (1 − 5i) z ⇒ (1 + (1 − 5i)) z = 1 − 5i ⇒ z = = 27−5i 29 (c) z1 = 0, if z 6= 0 ⇒ (2 − i) + 8z = 0 ⇒ z2 = 2−i 8 √ √ (d) z 2 = −16 ⇒ z = ± −16 = ±i 16 = ±4i 1.1.30. Suppose the complex number system has such a subset P. If i belongs to P then by (iii) i2 = −1 belongs to P and again by (iii) (−1) · i belongs to P This contradicts condition (i), since not both i and −i belong to P. So i cannot belong to P. The condition (i) tells us that −i must belong to P. But then, arguing as above, we see that (−i)(−i)(−i) = i belongs to P which is what we have just excluded. This contradiction shows that P cannot exist. 1.1.32. First compute u = (a + b)(c + d) = ac + ad + bc + bd, v = ac, and w = bd . This requires only three multiplications. Now the real part ac − bd and the imaginary part bc + ad of (a + ib)(c + id) can be computed using only addition and subtraction: ac − bd = v − w and bc + ad = u − v − w. 1.2.8. |z − 1|2 = (z − 1)(z − 1) = (z − 1)(z − 1) = |z − 1|2 ⇒ |z − 1| = |z − 1|. 1.2.14. |z1 z2 |2 = (z1 z2 )(z1 z2 ) = z1 z2 z1 z2 = |z1 |2 |z2 |2 ⇒ |z1 z2 | = |z1 ||z2 |. 2 2 2 1.2.16. h iLet zh= x + iy, 1 = |z|i = x + y , z 6= 1. 1 1 1−x 1−x Re 1−z =Re 1−x−iy · 1−x+iy 1−x+iy = (1−x)2 +y 2 = 1−2x+1 = 1−x 2(1−x) = 1 2 1.3.4. First consider the case where k is non-negative. Start with 1 = |z 0 | = |z|0 (for k = 0) and use the formula |z1 z2 | = |z1 ||z2 | (which we proved in class) recursively (i.e., by induction on k): if we know that |z k−1 | = |z|k−1 then |z k | = |z · z k−1 | = |z||z k−1 | = |z||z|k−1 | = |z|k . For negative k use the identity | zz21 | = |z1 | |z2 | proved in class, with z1 = 1 and z2 = z |k| . y x 1.3.12. z = x + iy = r(cos φ + i sin φ), cos φ = |z| , sin φ = |z| , φ = arg(z). √ 1 5π √ (a) r = 6 2, cos φ = sin φ = − 2 ⇒ φ = 4 + 2πk, k ∈ Z (b) r = π, cos φ = −1, sin φ = 0 ⇒ φ = π + 2πk, k ∈ Z (c) r = 10, cos φ = 0, sin φ = 1 ⇒ φ = π2 + 2πk, k ∈ Z √ (d) r = 2, cos φ = 23 , sin φ = − 21 ⇒ φ = − π6 + 2πk, k ∈ Z. The principal values of the argument (taking values in the interval (−π, π]) are given as follows: (a) Arg(−6 − 6i) = − 3π 4 , (b) Arg(−π) = π, (c) Arg(10i) = π2 , √ (d) Arg( 3 − i) = − π6 .
© Copyright 2026 Paperzz