3.44(a) BJS3 p.143 -x1 - 2x2 + x3 2x1 + x2 + x3 ≤ 6 2x2 - x3 ≤ 3 x1,x2,x3 ≥ 0 transform to: (add slack variables) -x1 - 2x2 + x3 2x1 + x2 + x3 + x4 =6 2x2 - x3 + x5 = 3 x1,x2,x3 ,x4,x5 ≥ 0 Minimize subject to data: b= Minimize subject to c= -1 -2 1 0 0 A= 2 0 1 2 1 -1 1 0 0 1 6 3 Tableau Iteration 1 Row Basic Variable z x1 x2 x3 x4 x5 RHS 0 z 1 1 2 -1 0 0 0 Rato Test 1 2 x4 x5 0 0 2 0 1 2 0 1 6 3 6 1.5 1 0 0 1 2 0 0 0 0.5 0 6 1.5 0 1 2 1 1 -1 0 ↓ Multiply row 2 by (1/pivot) = 1/2 2 1 1 Add -(2) = Add -(1) = Iteration 2 0 z 1 1 0 1 2 x4 x2 0 0 2 0 0 1 ↓ -1 1 -0.5 ↓ -2 -1 ↓ 0 0 1 0 times row 2 to row 0 times row 2 to row 1 0 -1 1.5 1 -0.5 -0.5 0 0.5 ↓ Multiply row 1 by (1/pivot) = 1/2 ↓ -3 Rato Test 4.5 1.5 2.25 - 0 1 2 1 0 0 1 1 0 0 0 1 Add -(1) = Iteration 3 0 0.75 -0.5 ↓ -1 ↓ 0 0.5 0 -1 -0.25 0.5 -3 2.25 1.5 times row 1 to row 0 0 z 1 0 0 -0.75 -0.5 -0.75 -5.25 1 2 x1 x2 0 0 1 0 0 1 0.75 -0.5 0.5 0 -0.25 0.5 2.25 1.5 optimal objective = -5.25 optimal basic feasible solution = (2.25,1.5,0,0,0) ← optimal B -1 c B = Iteration 1 B= 1 0 0 1 -1 B = 0 1 0 0 0 1 z-c= -1 B N= N= B -1 c B = Iteration 2 B= 1 0 1 2 -1 B = 0 1 0 -1 -0.5 0.5 z-c= -1 B N= N= 1 2 -1 2 0 2 0 1 2 1 2 1 -1 1 -1 x1 x2 x3 1 0 0 2 0 2 0 x1 1.5 -0.5 1 -1 x3 -0.5 0.5 0 1 x5 0 0 0 -1 B -1 c B = Iteration 3 B= 2 0 1 2 -1 B = -0.5 0.5 0 -0.75 -0.25 0.5 z-c= -1 B N= N= 0 0 -0.75 0.75 -0.5 1 -1 x3 0.5 0 1 0 x4 -0.25 0.5 0 1 x5 -0.5 -0.75 4.5 BJS3 p.185 -x1 - x2 3x1 + 4x2 ≤ 12 x1 - x2 ≥ 2 x1,x2 ≥ 0 (adding a slack and a surplus variable) transform to: - Minimize x1 + x2 subject to 3x1 + 4x2 + x3 = 12 x1 - x2 - x4 = 2 x1,x2,x3,x4 ≥ 0 (add an artificial for row 2) phase 1 : Minimize x5 with z - ( x1 + x2 ) = 0 (minimize in phase 2) subject to 3x1 + 4x2 + x3 = 12 x1 - x2 - x4 + x5 = 2 x1,x2,x3,x4 ≥ 0 Maximize subject to Tableau Basic Row Variable a 00 0 1 2 z z x3 x5 00 0 1 2 z z x3 x5 Iteration 1 (in phase 1) a a z z x1 1 0 0 0 0 1 0 0 0 -1 3 1 1 0 0 0 0 1 0 0 1 -1 3 1 x2 x3 x4 x5 RHS 0 0 0 -1 0 -1 0 0 0 0 4 1 0 0 12 -1 0 -1 1 2 ↓ Pivot on x5 in row 2 (add row 2 to row 1) to form starting basic solution ↓ -1 -1 4 -1 ↓ Pivot on x1 in row 2 0 0 1 0 -1 0 0 -1 0 0 0 1 2 0 12 2 a z = 0 and all artificials (only 1) are out of the basis ↓ Iteration 2 (in phase 2) 00 0 1 2 a z z x3 x1 1 0 0 0 0 1 0 0 0 0 0 1 optimal objective = -(2) = -2 optimal basic feasible solution = (2,0,6,0) 0 -2 7 -1 Rato Test 12/3 = 4 2/1 = 2 0 0 1 0 0 -1 3 -1 -1 1 -3 1 0 2 6 2 a ignore row 00 , column x5 , and the z ← optimal column 4.6 BJS3 p.185 5x1 - 2x2 + x3 2x1 + 4x2 + x3 ≤ 6 2x1 + 2x2 + 3x3 ≥ 2 x1,x2 ≥ 0 ; x3 free Maximize subject to transform to: - Minimize subject to + - + - (adding a slack and a surplus variable and substituting x3 = x3 - x3 ; x3 ,x3 ≥ 0) + - -5x1 + 2x2 - x3 + x3 + - 2x1 + 4x2 + x3 - x3 + x4 + - 2x1 + 2x2 + 3x3 - 3x3 + =6 - x5 = 2 - x1,x2,x3 ,x3 ,x4,x5 ≥ 0 phase 1 : (add an artificial for row 2) Minimize x6 + - with z - ( -5x1 + 2x2 - x3 + x3 subject to + )=0 (minimize z in phase 2) - 2x1 + 4x2 + x3 - x3 + x4 + - 2x1 + 2x2 + 3x3 - 3x3 + =6 - x5 + x6 = 2 - x1,x2,x3 ,x3 ,x4,x5,x6 ≥ 0 Tableau Basic Row Variable a 00 0 1 2 z z x4 x6 00 0 1 2 z z x4 x6 Iteration 1 (in phase 1) a a z z x1 1 0 0 0 0 1 0 0 0 5 2 2 1 0 0 0 0 1 0 0 2 5 2 2 x2 - x5 x6 RHS 0 0 0 0 0 -2 1 -1 0 0 4 1 -1 1 0 2 3 -3 0 -1 ↓ Pivot on x6 in row 2 (add row 2 to row 1) to form starting basic solution ↓ -1 0 0 1 0 0 6 2 0 0 0 1 2 0 6 2 2 -2 4 2 ↓ x3+ 3 1 1 3 x3 -3 -1 -1 -3 x4 0 0 1 0 -1 0 0 -1 Rato Test 6/1 = 6 2/3 + Pivot on x3 in row 2 ↓ Iteration 2 (in phase 2) a 00 0 1 z z x4 2 x3 + a z = 0 and all artificials (only 1) are out of the basis a 1 0 0 0 1 0 0 0 4.333333 -2.66667 1.333333 3.333333 0 0 0 0 0 0 0 0 1 0 -1 0 ignore row 00 , column x6 , and the z 0.333333 -0.33333 -0.66667 Rato Test 0.333333 -0.33333 5.333333 (16/3)/(4/3)=4 0 0 0.666667 0.666667 ↓ Pivot on x1 in row 2 ↓ 1 -1 0 -0.33333 0.333333 0.666667 (2/3)/(2/3)=1 column Iteration 3 (in phase 2) 0 1 2 z x4 x1 1 0 0 0 0 1 -7 2 1 ↓ z Pivot on x3 in row 1 ↓ 1 0 -13.5 -6.5 -2 1.5 6.5 2 -1.5 0 1 0 2.5 1 -0.5 -5 4 1 0 0 -3.25 -0.75 -18 -1 0 1 0 0.5 0.75 0.5 0.25 2 4 Rato Test 4/2 = 2 - - 0 - 0 0 x3 x1 0 1 optimal objective = -(-18) = 18 optimal basic feasible solution = (4,0,0,2,0,0) 1 2 1 2.5 + - optimal original variables: x1 = 4, x2 = 0, x3 = (x3 - x3 ) = (0-2) = -2 optimal slack and surplus variables: x4 = x5 = 0 ← optimal
© Copyright 2026 Paperzz