www.ck12.org Chapter 3. Trigonometric Identities and Equations, Solution Key 3.3 Solving Trigonometric Equations 1. Answer: • Because the problem deals with 2θ, the domain values must be doubled, making the domain 0 ≤ 2θ < 4π • The reference angle is α = sin−1 0.6 = 0.6435 • 2θ = 0.6435, π − 0.6435, 2π + 0.6435, 3π − 0.6435 • 2θ = 0.6435, 2.4980, 6.9266, 8.7812 • The values for θ are needed so the above values must be divided by 2. • θ = 0.3218, 1.2490, 3.4633, 4.3906 • The results can readily be checked by graphing the function. The four results are reasonable since they are the only results indicated on the graph that satisfy sin 2θ = 0.6. 2. cos2 x = √ cos2 x = 1 16 r 1 16 1 cos x = ± 4 1 Then cos x = 4 −1 1 cos =x 4 x = 1.3181 radians or cos x = − 1 4 1 cos−1 − = x 4 x = 1.8235 radians • However, cos x is also positive in the fourth quadrant, so the other possible solution for cos x = 14 is 2π − 1.3181 = 4.9651 radians • cos x is also negative in the third quadrant, so the other possible solution for cos x = − 41 is 2π − 1.8235 = 4.4597 radians 3. tan2 x = 1 √ tan x = ± 1 tan x = ±1 41 3.3. Solving Trigonometric Equations www.ck12.org • So, tan x = 1 or tan x = −1. • Therefore, x is all critical values corresponding with π 4 5π 7π within the interval. x = π4 , 3π 4 , 4 , 4 4. Use factoring by grouping. 2 sin x + 1 = 0 or 2 sin x = −1 1 sin x = − 2 7π 11π x= , 6 6 2 cos x − 1 = 0 2 cos x = 1 1 cos x = 2 π 5π x= , 3 3 5. You can factor this one like a quadratic. sin2 x − 2 sin x − 3 = 0 (sin x − 3)(sin x + 1) = 0 sin x − 3 = 0 sin x + 1 = 0 sin x = 3 sin x = −1 3π x= 2 or x = sin−1 (3) For this problem the only solution is 3π 2 because sine cannot be 3 (it is not in the range). 6. tan2 x = 3 tan x tan2 x − 3 tan x = 0 tan x(tan x − 3) = 0 tan x = 0 x = 0, π 42 or tan x = 3 x = 1.25 www.ck12.org Chapter 3. Trigonometric Identities and Equations, Solution Key 7. 2 sin2 4x − 3 cos 4x = 0 x x − 3 cos = 0 2 1 − cos2 4 4 x 2 x 2 − 2 cos − 3 cos = 0 4 4 x 2 x 2 cos + 3 cos − 2 = 0 4 4 x x 2 cos − 1 cos + 2 = 0 4 4 . & x x 2 cos − 1 = 0 or cos + 2 = 0 4 4 x x 2 cos = 1 cos = −2 4 4 x 1 cos = 4 2 x π 5π = or 4 3 3 4π 20π x= or 3 3 20π 3 is eliminated as a solution because it is outside of the range and cos 4x = −2 will not generate any solutions because −2 is outside of the range of cosine. Therefore, the only solution is 4π 3 . 8. 3 − 3 sin2 x = 8 sin x 3 − 3 sin2 x − 8 sin x = 0 3 sin2 x + 8 sin x − 3 = 0 (3 sin x − 1)(sin x + 3) = 0 3 sin x − 1 = 0 or sin x + 3 = 0 3 sin x = 1 1 sin x = sin x = −3 3 x = 0.3398 radians No solution exists x = π − 0.3398 = 2.8018 radians 9. 2 sin x tan x = tan x + sec x sin x 1 sin x = + cos x cos x cos x 2 sin2 x sin x + 1 = cos x cos x 2 2 sin x = sin x + 1 2 sin x · 2 sin2 x − sin x − 1 = 0 (2 sin x + 1)(sin x − 1) = 0 2 sin x + 1 = 0 2 sin x = −1 1 sin x = − 2 x= or sin x − 1 = 0 sin x = 1 7π 11π , 6 6 43 3.3. Solving Trigonometric Equations www.ck12.org One of the solutions is not π2 , because tan x and sec x in the original equation are undefined for this value of x. 10. 2 cos2 x + 3 sin x − 3 = 0 2(1 − sin2 x) + 3 sin x − 3 = 0 Pythagorean Identity 2 − 2 sin2 x + 3 sin x − 3 = 0 − 2 sin2 x + 3 sin x − 1 = 0 Multiply by − 1 2 sin2 x − 3 sin x + 1 = 0 (2 sin x − 1)(sin x − 1) = 0 2 sin x − 1 = 0 2 sin x = 1 1 sin x = 2 π 5π x= , 6 6 or sin x − 1 = 0 sin x = 1 x= π 2 11. tan2 x + tan x − 2 = 0 p 12 − 4(1)(−2) = tan x 2 √ −1 ± 1 + 8 = tan x 2 −1 ± 3 = tan x 2 tan x = −2 or 1 tan x = 1 when x = π4 , in the interval − π2 , π2 tan x = −2 when x = −1.107 rad 12. 5 cos2 θ − 6 sin θ = 0 over the interval [0, 2π]. 5 1 − sin2 x − 6 sin x = 0 −1 ± −5 sin2 x − 6 sin x + 5 = 0 5 sin2 x + 6 sin x − 5 = 0 p −6 ± 62 − 4(5)(−5) = sin x 2(5) √ −6 ± 36 + 100 = sin x 10 √ −6 ± 136 = sin x 10 √ −6 ± 2 34 = sin x 10 √ −3 ± 34 = sin x 5 √ √ x = sin−1 −3+ 5 34 or sin−1 −3− 5 34 x = 0.6018 rad or 2.5398 rad from the first expression, the second expression will not yield any answers because it is out the the range of sine. 44
© Copyright 2026 Paperzz