Chem 401 Discussion Workshop #10 Name________________________ Nuclear Chemistry 1 MeV = 1.602 x 10-13 J Speed of light: c = 2.998 x 108 m/s t 1/2 = Rate = kNt 0.693 k ln Nt = − kt N0 After decay amount = (original amount)(1/2)n E = mc2 (mass in kg, speed of light in m/s) Nt = e − kt N0 before decay amount = (end amount)(2)n ΔE = (Δm)c2 I. Complete and balance the following nuclear reactions then classify each reaction as alpha emission, beta emission, gamma emission, positron emission, electron capture, fission or fusion. Reaction Classification 218 84 Po → 42 He + _______ 214 82 Pb Alpha emission 254 102 No → 42 He + _______ 250 100 Fm Alpha emission Tc + _______ 0 γ Gamma emission 0 +1 e + _______ 207 83 Bi Positron emission 0 −1 e + _______ 228 89 Ac Beta emission Tc → 99 43 207 84 Po → 228 88 Ra → 99m 43 2 1 0 H + 31H → 42 He + _______ 01 n U _______ → 4 2 He + 234 90 Alpha emission Kr _______ → 0 -1 e+ 87 37 Rb Beta emission Fe → 55 25 Mn Electron capture 238 92 87 36 0 -1 e 13 7 N _______ → 1e + _______ + 55 26 0 235 92 14 6 Fusion U + 01n → 2 01 n + C→ 0 −1 13 6 Th C 137 52 Te _______ 97 40 Zr e + _______ 147 N Positron emission Fission Beta emission D10-1 Chem 401 Discussion Workshop #10 Name________________________ II Problem Solving 1. The carbon-14 activity of a fiber from an Egyptian mummy shroud is 7.50 disintegrations per minute per gram of carbon. How old is the fiber? The half-life of C-14 is 5730 years and the activity of fresh C-14 is 15.2 disintegrations per minute per gram of carbon. (Ans: 5.84 x 103 years) k = 0.693 = 0.693 = 1.21 x 10-4/yr t1/2 5730y ln Nt = -kt No t = ln (Nt/No) = ln (7.50/15.2) = -0.706 = 5.84 x 103 years -4 -4 -k -1.21 x 10 /y -1.21 x 10 /y 2. Radon in a tube is often used in cervical cancer therapy. The half-life of a radioactive radon is 3.8 days. If 11 micrograms of radon are sealed in a tube, how many micrograms remain after 21 days? (Ans: 0.24 μg) OR n = 21 = 5.53 half-lives 3.8 Nt/No = e-kt Nt = No(e-kt) After left = (original amount)(1/2)n 5.53 After left = (11μg)(1/2) k = 0.693 = 0.693 = 0.182/d t1/2 3.8d -(0.182/d)(21d) = 0.24μg Nt = (11μg) e -3.82 = (11 μg) e Nt = (11 ug)(0.219) = 0.24μg 3. How long will it take before the 11μg of radon in the previous problem is reduced to 1.0 x 10-6 micrograms. (Ans: 89 days) OR amount left= (original amount)(1/2)n -6 amt left original amt -8 k = 0.693 = 0.693 = 0.182/d t1/2 3.8d n = 1.0 x 10 μg = (0.5) 11μg ln Nt / No = -kt n 9.09 x 10 = (0.5) t = ln (Nt/No) = ln (1.0 x 10-6 μg /11 μg) -k -0.182/d -8 ln 9.09 x 10 = (n) ln0.5 n = ln9.09 x 10-8 = -1.62 = 23.4 ln0.5 -0.693 t== t = (23.4)(3.8) = 89 days t = = 89 days D10-2 ln9.09 x 10-8 = -16.2 -0.182/d -0.182/d Chem 401 Discussion Workshop #10 Name________________________ 4. A Se-75 source is producing 300 rem at a distance of 2.0 m. What distance is needed to decrease the intensity of exposure to below 25 rem? (Ans: 6.9 m) I A d 2B = I B d 2A d= d 2B = I A 2 300rem dA = (2m) 2 = (12)(4) = 48m 2 25rem IB 48m 2 =6.9m 5. A sample of Pr-147 is prepared and put in a scintillation counter. The initial counting rate is 200/min. After 36 minutes, the rate is 25 counts/min. What is the half-life of Pr-147? (Ans: 12 min) ln Nt = -kt No k = ln(Nt/No) = ln(25/200) = -2.08 = 0.0578/min -t -36min -36min t1/2 = 0.693 = 0.693 = 12min k 0.0578/min 6. Calculate the binding energy per nucleon in MeV of an atom of Pb-208 which has a mass of 208.060 amu. The masses of the proton, neutron, and electron are 1.007277 amu, 1.008665 amu, and 0.0005486 amu respectively. (Ans: 7.50 MeV/nucleon) protons neutrons electrons 82 (1.007277) = 82.596714 126 (1.008665) = 127.09179 82 (0.0005486) = 0.044985 209.733489 amu/atom or g/mol mass defect = 209.733489 -208.060 1.673489 g/mol ΔE = (Δm)c2 = 1.6735g x 1 kg x (2.998 x 108m/s)2= 1.504 x 1014J mol 1000g mol 1.504 x 1014J x 1 Mev x 1 mol = 1.559 x 103J 1 mol 1.602 x 10-13J 6.022 x 1023atoms atom 1.559 x 103J x atom 1 atom = 7.496 MeV/nucleon 208 nucleons D10-3
© Copyright 2025 Paperzz