C3 Exam Workshop 2 Workbook 1. (a) Express 7 cos x − 24 sin x in the form R cos (x + α) where R > 0 and 0 < α < Give the value of α to 3 decimal places. π 2 . (3) (b) Hence write down the minimum value of 7 cos x – 24 sin x. (1) (c) Solve, for 0 ≤ x < 2π, the equation 7 cos x − 24 sin x = 10, giving your answers to 2 decimal places. (5) © BlueStar Mathematics Workshops (2011) 1 2. (a) Express 1.5 sin 2x + 2 cos 2x in the form R sin (2x + α), where R > 0 and 0 < α < 12 π , giving your values of R and α to 3 decimal places where appropriate. (4) (b) Express 3 sin x cos x + 4 cos2 x in the form a cos 2x + b sin 2x + c, where a, b and c are constants to be found. (2) (c) Hence, using your answer to part (a), deduce the maximum value of 3 sin x cos x + 4 cos2 x. (2) © BlueStar Mathematics Workshops (2011) 2 BLANK PAGE © BlueStar Mathematics Workshops (2011) 3 3. (a) Prove that 1 − cos 2θ ≡ tan θ , sin 2θ θ ≠ nπ , n ∈ ℤ. 2 (3) (b) Solve, giving exact answers in terms of π, 2(1 – cos 2θ ) = tan θ , 0<θ <π. © BlueStar Mathematics Workshops (2011) (6) 4 BLANK PAGE © BlueStar Mathematics Workshops (2011) 5 4. (a) Express sin x + √3 cos x in the form R sin (x + α), where R > 0 and 0 < α < 90°. (4) (b) Show that the equation sec x + √3 cosec x = 4 can be written in the form sin x + √3 cos x = 2 sin 2x. (3) (c) Deduce from parts (a) and (b) that sec x + √3 cosec x = 4 can be written in the form sin 2x – sin (x + 60°) = 0. (1) X +Y X −Y , or otherwise, sin 2 2 find the values of x in the interval 0 ≤ x ≤ 180°, for which sec x + √3 cosec x = 4. (5) (d) Hence, using the identity sin X – sin Y = 2 cos © BlueStar Mathematics Workshops (2011) 6 BLANK PAGE © BlueStar Mathematics Workshops (2011) 7 5. (i) (a) Express (12 cos θ – 5 sin θ) in the form R cos (θ + α), where R > 0 and 0 < α < 90°. (4) (b) Hence solve the equation 12 cos θ – 5 sin θ = 4, for 0 < θ < 90°, giving your answer to 1 decimal place. (3) (ii) Solve 8 cot θ – 3 tan θ = 2, for 0 < θ < 90°, giving your answer to 1 decimal place. © BlueStar Mathematics Workshops (2011) (5) 8 BLANK PAGE © BlueStar Mathematics Workshops (2011) 9 6. (i) Given that sin x = 3 , use an appropriate double angle formula to find the exact 5 value of sec 2x. (4) (ii) Prove that cot 2x + cosec 2x ≡ cot x, nπ ⎛ ⎞ , n ∈ Z⎟ . ⎜x≠ 2 ⎝ ⎠ © BlueStar Mathematics Workshops (2011) (4) 10 BLANK PAGE © BlueStar Mathematics Workshops (2011) 11 7. (a) Prove that 1 − tan 2 θ ≡ cos 2θ . 1 + tan 2 θ (4) (b) Hence, or otherwise, prove tan2 π 8 = 3 – 2√2. (5) © BlueStar Mathematics Workshops (2011) 12 BLANK PAGE © BlueStar Mathematics Workshops (2011) 13 8. (a) Prove that for all values of x 2 tan x − sin 2x = 2 sin 2 x tan x . (5) (b) Hence, or otherwise, find the values of x in the interval 0 ≤ x ≤ 360º, for which 2 tan x − sin 2x = sin 2 x giving your answers to an appropriate degree of accuracy. (6) © BlueStar Mathematics Workshops (2011) 14 BLANK PAGE © BlueStar Mathematics Workshops (2011) 15 9. (a) Using the half-angle formulae, or otherwise, prove that for all values of x 1 + cos x x ≡ cot 2 . 1 − cos x 2 (5) (b) Hence, or otherwise, find the values of x in the interval 0 ≤ x ≤ 2π for which 1 + cos x x = 6cosec − 10 1 − cos x 2 © BlueStar Mathematics Workshops (2011) (7) 16 BLANK PAGE © BlueStar Mathematics Workshops (2011) 17 10. (a) Prove that there are no real values of θ for which cos 2θ + cosθ + 2 = 0 . (4) (b) Find the values of x in the interval 0 ≤ x ≤ 360º, for which 3sin x − 2 cos 2 x = 0 (5) (c) Hence, find the values of y in the interval 0 ≤ y ≤ 180º, for which 3sec 2y − 2 cot 2y = 0 (4) © BlueStar Mathematics Workshops (2011) 18 BLANK PAGE © BlueStar Mathematics Workshops (2011) 19 11. (a) Prove that for all values of x ( ) cos 2 x − sin 2 2x ≡ cos 2 x 4 cos 2 x − 3 . (5) (b) Hence, or otherwise, find the values of x in the interval 0 ≤ x ≤ 2π for which cos 2 x − sin 2 2x = 0 giving your answer in terms of π. (6) © BlueStar Mathematics Workshops (2011) 20 BLANK PAGE © BlueStar Mathematics Workshops (2011) 21 12. (a) Show that for all values of x, where x is measured in degrees, cos ( x + 60° ) − 3 sin ( x − 60° ) ≡ 2 cos x − 3 sin x . (5) (b) Hence, find the values of x in the interval -180º ≤ x ≤ 180º, for which cos ( x + 60º ) − 3 sin ( x − 60º ) = 0 (4) © BlueStar Mathematics Workshops (2011) 22 BLANK PAGE © BlueStar Mathematics Workshops (2011) 23 13. (a) Using the identity cos (A + B) ≡ cos A cos B – sin A sin B, prove that cos 2A ≡ 1 – 2 sin2 A. (2) (b) Show that 2 sin 2θ – 3 cos 2θ – 3 sin θ + 3 ≡ sin θ (4 cos θ + 6 sin θ – 3). (4) (c) Express 4 cos θ + 6 sin θ in the form R sin (θ + α ), where R > 0 and 0 < α < 12 π . (4) (d) Hence, for 0 ≤ θ < π, solve 2 sin 2θ = 3(cos 2θ + sin θ – 1), giving your answers in radians to 3 significant figures, where appropriate. (5) © BlueStar Mathematics Workshops (2011) 24 BLANK PAGE © BlueStar Mathematics Workshops (2011) 25 14. (a) Use the double angle formulae and the identity cos(A + B) ≡ cosA cosB − sinA sinB to obtain an expression for cos 3x in terms of powers of cos x only. (4) (b) (i) Prove that cos x 1+ sin x + ≡ 2 sec x, 1 + sin x cos x x ≠ (2n + 1) π . 2 (4) (ii) Hence find, for 0 < x < 2π, all the solutions of cos x 1+ sin x + = 4. 1 + sin x cos x © BlueStar Mathematics Workshops (2011) (3) 26 BLANK PAGE © BlueStar Mathematics Workshops (2011) 27 15. a) b) Given that sin (θ + α ) = 2.5 sin θ , show that tan θ = sin α . 2.5 − cos α (3) Hence, solve the equation sin (θ + 45° ) = 2.5 sin θ , given 0° ≤ θ ≤ 360° . (4) END © BlueStar Mathematics Workshops (2011) 28
© Copyright 2026 Paperzz