Clinical Trials Time-Dependent Effects of Aspirin on Blood Pressure and Morning Platelet Reactivity A Randomized Cross-Over Trial Tobias N. Bonten, Jaapjan D. Snoep, Willem J.J. Assendelft, Jaap Jan Zwaginga, Jeroen Eikenboom, Menno V. Huisman, Frits R. Rosendaal, Johanna G. van der Bom Downloaded from http://hyper.ahajournals.org/ by guest on June 14, 2017 Abstract—Aspirin is used for cardiovascular disease (CVD) prevention by millions of patients on a daily basis. Previous studies suggested that aspirin intake at bedtime reduces blood pressure compared with intake on awakening. This has never been studied in patients with CVD. Moreover, platelet reactivity and CVD incidence is highest during morning hours. Bedtime aspirin intake may attenuate morning platelet reactivity. This clinical trial examined the effect of bedtime aspirin intake compared with intake on awakening on 24-hour ambulatory blood pressure measurement and morning platelet reactivity in patients using aspirin for CVD prevention. In this randomized open-label crossover trial, 290 patients were randomized to take 100 mg aspirin on awakening or at bedtime during 2 periods of 3 months. At the end of each period, 24-hour blood pressure and morning platelet reactivity were measured. The primary analysis population comprised 263 (blood pressure) and 133 (platelet reactivity) patients. Aspirin intake at bedtime did not reduce blood pressure compared with intake on awakening (difference systolic/diastolic: −0.1 [95% confidence interval, −1.0, 0.9]/−0.6 [95% confidence interval, −1.2, 0.0] mm Hg). Platelet reactivity during morning hours was reduced with bedtime aspirin intake (difference: −22 aspirin reaction units [95% confidence interval, −35, −9]). The intake of low-dose aspirin at bedtime compared with intake on awakening did not reduce blood pressure of patients with CVD. However, bedtime aspirin reduced morning platelet reactivity. Future studies are needed to assess the effect of this promising simple intervention on the excess of cardiovascular events during the high risk morning hours. (Hypertension. 2015;65:743-750. DOI: 10.1161/ HYPERTENSIONAHA.114.04980.) Online Data Supplement • Key Words: aspirin ■ blood pressure ■ C ardiovascular disease (CVD) is still a leading cause of mortality and morbidity worldwide.1,2 One of the most important modifiable risk factors for CVD is blood pressure. Even small reductions of blood pressure significantly decrease the risk of myocardial infarction and stroke.3 However, almost half of the patients with hypertension remain uncontrolled, despite blood pressure lowering medication.4 Thus, simple interventions to improve blood pressure control are needed. Aspirin traditionally was assumed to have no effect on blood pressure,5 but in recent studies, aspirin intake at bedtime compared with intake on awakening considerably reduced blood pressure.6–11 Additionally, we previously found that aspirin intake at bedtime compared with on awakening reduced plasma renin activity and cortisol, dopamine and norepinephrine excretions over 24 hours.12 However, all previous studies included healthy subjects, pregnant women, or patients with mild hypertension.6–11,13 If the effect of bedtime aspirin intake on blood pressure also holds for patients who chronotherapy ■ platelet activation already use aspirin for CVD prevention, simply changing the time of intake from awakening to bedtime could substantially reduce their risk for recurrent cardiovascular events. Furthermore, platelet aggregation peaks during morning hours, which is thought to contribute to the observed peak of CVD from 6 to 12 AM.14,15 Because of its short half-life, aspirin only inhibits the platelets that are present at the time of intake, whereas new platelets are released at a rate of 10% per day in healthy subjects.16,17 Thus, just before each aspirin intake, these newly released platelets are uninhibited and can induce platelet aggregation.18,19 However, it is desirable to achieve optimal platelet aggregation inhibition particularly during those high risk morning hours. As already suggested by previous authors, intake of aspirin at bedtime might attenuate the morning peak of platelet reactivity, but this was never evaluated in a clinical trial.20,21 To assess whether aspirin intake at bedtime compared with intake on awakening reduces blood pressure and morning Received November 25, 2014; first decision December 11, 2014; revision accepted January 25, 2015. From the Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands (T.N.B., J.D.S., F.R.R., J.G.v.d.B.); Department of Primary and Community Care, Radboud University Medical Center, Nijmegen, the Netherlands (W.J.J.A.); Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands (W.J.J.A.); JJ van Rood Center for Clinical Transfusion Research, Sanquin Research, Leiden, the Netherlands (J.J.Z., J.G.v.d.B.); and Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands (J.E., M.V.H.). The online-only Data Supplement is available with this article at http://hyper.ahajournals.org/lookup/suppl/doi:10.1161/HYPERTENSIONAHA. 114.04980/-/DC1 Correspondence to T.N. Bonten, Leiden University Medical Center, Department of Clinical Epidemiology, C7-P, PO Box 9600, 2300 RC Leiden, the Netherlands. E-mail [email protected] © 2015 American Heart Association, Inc. Hypertension is available at http://hyper.ahajournals.org DOI: 10.1161/HYPERTENSIONAHA.114.04980 743 744 Hypertension April 2015 platelet reactivity, we conducted a randomized crossover trial in patients using low-dose aspirin for prevention of CVD. Methods Design Overview An overview of the study design is depicted in Figure 1. A prospective, randomized, open-label, blinded end point (PROBE), 2-period crossover study was conducted at a single center in the Netherlands and registered at www.clinicaltrials.gov/ct2/show/NCT01379079. Benefits of the PROBE design and its validity for studies measuring ambulatory blood pressure have been previously documented.22 The study was conducted in accordance with the Declaration of Helsinki, approved by the Leiden University Medical Center (LUMC) Ethics Committee, and all subjects gave written informed consent. Setting and Participants Downloaded from http://hyper.ahajournals.org/ by guest on June 14, 2017 Patients between 18 and 75 years of age using low-dose (80–100 mg) aspirin for secondary prevention of CVD were recruited from general practitioner practices around Leiden, the Netherlands. Exclusion criteria were baseline blood pressure (BP) <120/70 or >160/100 mm Hg, use of other antiplatelet or anticoagulant drugs, change of antihypertensive medication in the 3 months before baseline, use of nonsteroidal antiinflammatory drugs, employment as shift worker, evidence of secondary arterial hypertension (eg, pheochromocytoma), and pregnancy. Randomization and Interventions Randomization was performed with a computer-generated randomization code by an independent person at the Department of Clinical Epidemiology of the LUMC and was inaccessible to the investigators. Eligible subjects were randomized (1:1 ratio) to take aspirin on awakening followed by aspirin at bedtime or the opposite order during 2 intervention periods of 3 months (Figure 1). The 2 intervention periods were not separated by a wash-out period because withholding aspirin to the included patients was considered unethical. The duration of each intervention period was analogous to previous studies.9–11 All subjects received 100 mg effervescent aspirin (Carbasalate Calcium, Vemeda Manufacturing, the Netherlands). At the end of each intervention period, subjects visited the research site for 2 consecutive days. At day 1, 24-hour ambulatory blood pressure measurement (ABPM) was started between 8 to 12 AM, and subjects took aspirin at the same time as in the preceding 3 months. At day 2, subjects refrained from taking aspirin in the morning, ABPM was ended, and blood was drawn. The time of ABPM start at day 1 and blood draw at day 2 was similar for each participant at each visit. Outcomes Blood Pressure Baseline BP was measured by an automatic device (Mobil-O-Graph NG device; IEM GmbH, Germany) every 2 minutes in seated position after 10 minutes of rest. The average of 6 readings was used to determine baseline blood pressure. As the primary end point, ABPM was performed during participants normal daily routine with a validated and calibrated Mobil-O-Graph NG device (IEM GmbH, Germany). Measurements started between 8 and 12 AM, and the same device was used at each visit. The BP cuff was adjusted to arm circumference and worn on the nondominant arm. Systolic and diastolic BP were automatically measured every 20 minutes during day and every 30 minutes during night for 24 consecutive hours, with the screen turned off to blind subjects for BP readings. Bed and awakening times were recorded in a diary. ABPM was considered valid if ≥70% of measurements were valid, sleep time during ABPM was between 6 and 12 hours, and data were not missing for >2 hours. Platelet Reactivity As a secondary end point, platelet reactivity was measured during morning hours (between 8 and 12 AM). At the morning of blood sampling, subjects refrained from taking aspirin. Blood was sampled without stasis from the antecubital vein, and platelet reactivity was measured with the VerifyNow® Aspirin Assay (Accumetrics, San Diego, USA) and reported in Aspirin Reaction Units (ARU).23 Questionnaires, Compliance, and Patient Preference Subjects completed a questionnaire to assess eligibility criteria, medical history, medication use, and chronobiological rhythm at baseline. Missing information was completed with general practitioner or pharmacy records. At each follow-up visit, side effects and change of medication was registered by questionnaires. Subjects were instructed to take aspirin within 1 hour after awakening or 1 hour before bedtime. Compliance was assessed and optimized with electronic pill boxes (Evalan, Amsterdam, the Netherlands), which registered time of intake and sent an SMS text message if subjects were noncompliant. Additionally, pill count was performed at each visit. Participants and general physicians were instructed not to change or start new medication during the study, which was checked with questionnaires at each follow-up visit. Statistical Analysis To detect an interindividual difference of 3 mm Hg in blood pressure with 80% power at a 5% significance level, we calculated a required sample size of 250 patients. We assumed an intraindividual standard deviation of 12.9 mm Hg, as derived from a previous study.12 Estimating a drop-out of 10% and invalid ABPM of 5%, we randomized 290 subjects. As planned on beforehand, platelet reactivity was measured in the first consecutive 160 patients, yielding a power of 90% to detect a difference of 17 ARU at a 5% significance level. For this calculation, we used an intraindividual standard deviation of 46.85 ARU.24 Continuous characteristics are described as mean±standard deviation (SD) if normally distributed or as median (interquartile range [IQR]) if not normally distributed. Categorical variables are expressed as numbers (percentages). ABPM values were edited according to conventional criteria to remove measurement errors and outliers. Because sampling frequency was denser during the day (3×/hour) than during the night (2×/hour), we calculated a weighted overall mean BP, as suggested previously25: (mean day BP × nr day measurements) + (mean night BP × nr night measurements) ments nr day measurements + nr night measurem Mean day and night BP was calculated as Figure 1. Study design. Visit 1, Screening for inclusive and exclusion criteria. Visit 2 and 3, Ambulatory blood pressure measurement (ABPM) measurement, blood draw during morning hours, questionnaire. sum day or night measurements nr day or night measurements The start of day- and nighttimes was obtained from diaries. The primary end point was assessed in a primary and secondary analysis population. The primary analysis population included all subjects who were randomized and completed measurements of end points. The secondary analysis population excluded subjects with ≥1 invalid ABPM, change of antihypertensive medication, or compliance <90%. Paired t-tests were performed to analyze day, night, and overall mean BP after intake of aspirin on awakening and at bedtime. Additionally, linear mixed models were used to assess treatment effects and period or carry-over effects. Subgroup analyses were prespecified for users of β-blockers, inhibitors of the renin–angiotensin system (users versus nonusers), users of no- versus ≥1 blood pressure lowering drugs, and subjects with baseline systolic BP of >140 versus ≤140 mm Hg. Bonten et al Blood Pressure and Bedtime Aspirin 745 The secondary end point platelet reactivity was analyzed with a paired t-test and linear mixed models. Subjects who forgot to take aspirin on the day before platelet reactivity measurements (n=3) were excluded from analysis. Subgroup analyses were prespecified for diabetic subjects, current smokers (yes versus no), and mean platelet volume values (divided into quartiles). Although not prespecified, an additional subgroup analysis for body mass index was performed because obesity, as a marker for metabolic syndrome, may be associated with platelet reactivity.26 Side effects and patient preferences were analyzed descriptively and using McNemar’s test. All analyses were performed in SPSS 20.0 (IBM corp., USA) and were 2-sided, with a level of significance of 0.05. Results Study Population and Compliance Downloaded from http://hyper.ahajournals.org/ by guest on June 14, 2017 Between June 2011 and March 2013, 3479 subjects were screened at 30 general practitioner practices, of whom 1704 did not meet inclusion criteria, primarily because of age >75 years (n=1080) and use of other platelet inhibiting drugs (n=386; Figure 2). A total of 290 subjects were randomized, and baseline characteristics were similar between groups (Table 1). Study follow-up was discontinued by 26 subjects, primarily because study participation was too aggravating (18/26; 70%). Primary and secondary analysis populations comprised 263 and 150 subjects, respectively, for assessment of the primary end point. Measurements for the secondary end point platelet reactivity were complete for 136 subjects. Compliance as measured by electronic pill boxes and pill count was high and similar with aspirin intake on awakening (99% [97%–100%] and 100% [100%–100%], respectively) and intake at bedtime (98% [94%–100%] and 100% [100%–100%]). Study start: September 2011 Blood Pressure The circadian 24-hour ABPM profile after 3 months aspirin intake on awakening and 3 months intake at bedtime is depicted in Figure 3. The mean (SD) 24-hour systolic and diastolic blood pressures were 127 (12) and 79 (9) mm Hg with aspirin intake on awakening, whereas these were 127 (12) and 78 (8) with aspirin at bedtime. This resulted in differences of −0.1 mm Hg (95% confidence interval, −1.0 to 0.9) and −0.6 mm Hg (95% confidence interval, −1.2 to 0.0). Furthermore, systolic and diastolic blood pressures during day- and nighttime did not differ by the timing of aspirin intake (Table 2). Mixed model analysis showed the same results and no evidence for carry-over or period effects (data not shown). Additionally, findings among subgroups of subjects using or not using β-blockers, angiotensin inhibitors, blood pressure lowering drugs in general, or subjects with baseline office BP >140 or ≤140 mm Hg were similar to the overall results (Table S1 in the online-only Data Supplement). Finally, in the secondary analysis, comprising only patients with valid ABPM at both visits who did not change their antihypertensive medication between visit 2 and 3 and were ≥90% compliant as registered with electronic pill boxes, aspirin intake at bedtime was not associated with a reduction of mean 24-hour blood pressure or day- and nighttime blood pressure (Table S2). Platelet Reactivity Three subjects forgot to take aspirin on the day before platelet reactivity measurements and were excluded from this analysis. In the remaining 133 subjects, aspirin intake at bedtime reduced morning platelet reactivity (mean difference −22 ARU Assessed for eligibility (n=3479) Study completion: September 2013 Randomized (n=290) Allocated to evening intake (n=145) Visit 2 (3 months) Withdrawal of consent (n=6) Participation too aggravating (n=4) Dyspepsia (n=2) Allocation Follow-up Not included (n=3189) Did not meet inclusion criteria (n=1704) Declined to participate (n=655) Did not respond to invitation (n=527) Excluded for other reasons* (n=303) Allocated to evening intake (n=145) Visit 2 (3 months) Withdrawal of consent (n=9) Participation too aggravating (n=7) Stopped aspirin use (n=2) Crossed over to evening intake (n=139) Crossed over to morning intake (n=136) Visit 3 (6 months) Withdrawal of consent (n=5) Participation too aggravating (n=4) Stopped aspirin use (n=1) Visit 3 (6 months) Withdrawal of consent (n=6) Participation too aggravating (n=3) Stopped aspirin use (n=3) Completed 6 month study period (n=134) Completed 6 month study period (n=130) Primary analysis population Primary endpoint: ABPM (n=134) Secondary endpoint: Platelet reactivity (n=71) Secondary analysis population (n=73) Excluded (n=61) Invalid ABPM visit 1 and/or visit 2 (n=30) Change of blood pressure lowering drugs (n=8) Compliance during whole study < 90% (n=23) Analysis populations Primary analysis population Primary endpoint: ABPM (n=129†) Secondary endpoint: Platelet reactivity (n=65) Secondary analysis population (n=77) Excluded (n=52) Invalid ABPM visit 1 and/or visit 2 (n=27) Change of blood pressure lowering drugs (n=6) Compliance during whole study < 90% (n=19) Figure 2. Patient flow. ABPM indicates ambulatory blood pressure measurement. *Other reasons: stopped aspirin use before inclusion, not able to participate in clinical trial as judged by general practitioner, changed address, not speaking Dutch language. †One subject refused ABPM at the last follow-up visit. 746 Hypertension April 2015 Table 1. Baseline Clinical Characteristics of Randomized Study Participants (n=290)* Variable Awakening—Bedtime Group (n=145) Bedtime—Awakening Group (n=145) Sex (M/F) 106/39 106/39 64±7 64±7 Age, y Current smokers 21 (15) 28 (19) Body mass index, kg/m2 28.4±4.7 28·1±4.6 Systolic blood pressure, mm Hg 137±10 137±10 Diastolic blood pressure, mm Hg 88±8 88±8 Diabetics 17 (12) 14 (10) Myocardial infarction 53 (37) 59 (41) Stable angina pectoris 59 (41) 61 (42) Stroke/transient ischemic attack 28 (19) 23 (16) Atrial fibrillation 14 (10) 13 (9) Peripheral artery disease 12 (8) 9 (6) 3 (2) 1 (1) 106 (73) 100 (69) Downloaded from http://hyper.ahajournals.org/ by guest on June 14, 2017 Aspirin use at baseline On awakening Duration, y 6 (3–11) 6 (4–14) 2 (1–2.5) 2 (1–3) Medication use Number of blood pressure lowering drugs‡ β-Blockers 74 (51) 80 (55) Ace-inhibitors 60 (41) 55 (38) Angiotensin II inhibitors 37 (26) 33 (23) Calcium antagonists 29 (20) 27 (19) Diuretics 37 (26) 46 (32) 116 (80) 123 (85) Lipid lowering drugs Discussion In this large crossover trial among patients using low-dose aspirin for CVD prevention, 24-hour blood pressure did not differ between aspirin intake at bedtime and intake on awakening. However, aspirin intake at bedtime was associated with lower morning platelet reactivity. Comparison With Previous Studies Cardiovascular history Other† entry. A total of 32/264 (12%) switched from intake on awakening to intake at bedtime and 21/264 (8%) from at bedtime to on awakening. So, no clear patient preference was present for time of intake. *Continuous values are presented as means±standard deviation (SD) or medians+interquartile range if not normally distributed. Categorical values are presented as number (%). †Other cardiovascular disease: heart valve disease (n=3), myelodysplastic syndrome (n=1). ‡Blood pressure lowering drugs: β-blockers, α-blockers, ace-inhibitors, angiotensin-II inhibitors, calcium antagonists, thiazide and loop diuretics, nitrates (daily use). [95% confidence interval −35 to −9]; P=0.001; Figure 4). Subgroup analysis showed that, besides in subjects with diabetes mellitus, aspirin intake at bedtime reduced platelet reactivity in all subgroups (Table S3). Side Effects and Patient Preference Three subjects did not complete the study because of side effects (Table S4). The frequency of well-known aspirin side effects (dyspepsia, nausea, heartburn) was similar between aspirin intake on awakening and at bedtime (Table S5). After completion of the study, 53/264 (20%) preferred to switch to another time of aspirin intake than before study Multiple previous studies, mostly from a single source in this field, reported a blood pressure lowering effect of bedtime aspirin intake.6–11,13,27 Subsequently, our group found a biological plausible mechanism underlying this phenomenon: compared with intake on awakening, bedtime aspirin intake reduced plasma renin activity and cortisol, dopamine, and norepinephrine excretions over 24 hours.12 So, the finding that aspirin intake at bedtime compared with intake on awakening does not reduce blood pressure is in contrast with these previous studies. This may be explained by differences in study populations. First, previous studies included subjects who did not use blood pressure lowering drugs, such as β-blockers or inhibitors of the renin–angiotensin–aldosterone system. This is an important difference because the mechanism behind the time-dependent effect of aspirin on blood pressure was previously related to a reduction renin– angiotensin–aldosterone system and catecholamine activity over 24 hours.12 However, we did not find an effect in both users and nonusers of β-blockers or renin–angiotensin– aldosterone system inhibitors. Even in the subgroup that did not use any blood pressure lowering drugs, there was no effect. Our findings corroborate those of an earlier study, which also did not find a blood pressure lowering effect of bedtime aspirin intake among treated hypertensive patients.28 Second, patients in all previous studies did not use aspirin before study entry. In contrast, all patients in our study had a medical indication for aspirin use and had used aspirin for median 6 years. It is possible that the time-dependent effect of aspirin on blood pressure weakens over time because of increased arterial stiffening.29 However, a potential blood pressure lowering effect of bedtime aspirin intake would only be clinically relevant in patients already using aspirin for CVD prevention, and we are the first in this field to include this clinically relevant patient group. Given the absence of a blood pressure lowering effect of bedtime aspirin in any subgroup of our study, in our opinion, no further studies are needed to assess the blood pressure lowering effect of bedtime aspirin in patients using aspirin for CVD prevention. The circadian rhythm of platelet reactivity and its relation with the morning peak of cardiovascular events has been thoroughly studied.15,30 Previous authors suggested that platelet inhibition during these high risk morning hours could be optimized by aspirin intake at bedtime.20,21 Subsequent studies clearly showed that the antiplatelet effect of aspirin declines during the 24-hour dosing interval.18,19,31 In our study, we compared platelet function 12 hours after aspirin intake (bedtime Bonten et al Blood Pressure and Bedtime Aspirin 747 Downloaded from http://hyper.ahajournals.org/ by guest on June 14, 2017 Figure 3. Effect of low-dose aspirin intake at bedtime compared with intake on awakening on 24-hour ambulatory blood pressure profile in the primary analysis population (n=263). A, Systolic blood pressure. B, Diastolic blood pressure. Each graph shows hourly means and standard errors of blood pressure measured at low-dose aspirin intake on awakening (continuous black line) and low-dose aspirin intake at bedtime (dashed gray line). Hours on the x-axis refer to hours after awakening from nocturnal sleep. The shaded area represents the average nocturnal period for all subjects. intake) with 24 hours after intake (morning intake). So, a decline in platelet activity during morning hours could have been expected. Nevertheless, to the best of our knowledge, this has never been evaluated in a clinical trial. Additionally, reducing platelet reactivity during the high risk morning hours could be clinically relevant for patients with CVD. Previously, we studied the time-dependent effect of aspirin on morning platelet reactivity in healthy subjects.32 The results of this study confirm these findings for patients using aspirin on a daily basis. Our study suggests that morning platelet reactivity can be reduced by taking aspirin at bedtime instead of on awakening. This effect was homogeneously present in 748 Hypertension April 2015 Table 2. Mean 24-Hour, Day and Night Ambulatory Blood Pressure Values (mm Hg) According to Time of Aspirin Administration in the Primary Analysis Population (n=263) Value Mean Difference (Bedtime–Awakening) Aspirin on Awakening Aspirin at Bedtime (95% CI)* 24-hour SBP 127±12 127±12 −0.1 [−1.0 to 0.9] 24-hour DBP 79±9 78±8 −0.6 [−1.2 to 0.0] Day SBP 131±12 131±12 Day DBP 82±9 81±9 Night SBP 117±15 117±14 −0.1 [−1.4 to 1.1] Night DBP 69±10 69±9 −0.4 [−1.2 to 0.3] 0.0 [−1.0 to 1.0] −0.6 [−1.2 to 0.1] *Mean difference and 95% CI obtained with paired t-tests. Values are mean±standard deviation. CI indicates confidence interval; DBP, diastolic blood pressure; and SBP, systolic blood pressure. Downloaded from http://hyper.ahajournals.org/ by guest on June 14, 2017 all subgroups, except in diabetic subjects. However, the size of this subgroup was too small (n=18) to rule out any effect in diabetic patients. Additionally, diabetic patients have higher platelet turnover, and twice daily dosing of aspirin yields more effective platelet inhibition over the whole day in diabetic patients.33,34 The reduction of platelet reactivity during the vulnerable morning hours might be beneficial for patients with CVD, who have higher platelet turnover, and of which in 25%, platelet reactivity is inadequately inhibited 24 hours after aspirin intake.31,35 Clinical Interpretation It has been shown that the risk for recurrent cardiovascular events is increased in patients with higher VerifyNow-aspirin platelet reactivity values.36,37 Stable CVD patients with platelet reactivity >550 ARU had an absolute risk of 15.6% for developing the composite cardiovascular end point, whereas this was only 5.3% in patients with ARU values <550.37 In another study, the absolute risk for the primary end point (all-cause death and recurrent cardiovascular events) was 13.3% in patients >454 ARU and 5.9% in patients <454 ARU.36 These observational studies suggest that a reduction in platelet reactivity could result in clinical benefit for patients with CVD. Because the CVD morning peak is a multifactorial process, we do not expect that bedtime aspirin would abolish the CVD morning peak completely.38 Still, given the high prevalence of CVD, already a modest reduction of the morning peak would lead to a large absolute benefit. For example, 280.000 recurrent cardiovascular events occur in the United States (US) every year, with a known excess of 40% during the morning hours.39 If aspirin intake at bedtime would reduce this morning peak by 20%, it would lead to an absolute reduction of 4853 recurrent events each year in the United States alone. So, switching to bedtime aspirin intake is a simple and possible effective intervention. Future studies should evaluate whether this indeed translates in a reduction of cardiovascular events. Strengths and Limitations The major strength of our study is its crossover design, which yields high statistical power and enables comparison of treatment effects within each patient. Furthermore, this is the first study in this field which registered the actual time of aspirin intake with electronic pill boxes, which is of major importance to study time-dependent effects. The main limitation of our study is that only 150/263 (57%) patients complied perfectly with the study protocol. This was mainly because of invalid ABPM (n=57) or compliance of <90% within the prespecified time of intake (n=42). However, sensitivity analysis among patients with complete follow-up and compliance revealed the same results with narrow confidence intervals (Table S2). Regarding platelet reactivity measurements, it is a limitation that we measured platelet reactivity at only 1 time point during the morning, although comparability within subjects was optimized by drawing blood at the same time at each visit. A large proportion of the potentially eligible patients did not respond or did not want to participate in this study. However, the included patients resembled a general CVD population with regard to age, sex, medical history, and medication use. Perspectives In this study, bedtime aspirin did not reduce blood pressure in patients with stable CVD using low-dose aspirin on a daily basis. So, we would not recommend switching to bedtime intake of aspirin to reduce blood pressure in those patients. Yet, bedtime aspirin intake did reduce platelet reactivity during morning hours. Future studies are needed to assess the effect of this simple intervention on the excess of cardiovascular events during morning hours. Figure 4. Effect of low-dose aspirin intake at bedtime versus on awakening on morning platelet reactivity. Black bar represents VerifyNow platelet reactivity values after aspirin intake on awakening. Gray dashed bar represents values after aspirin intake at bedtime. Acknowledgments We thank all laboratory technicians of the Leiden University Medical Center (LUMC) Einthoven Laboratory for Experimental Vascular Medicine for processing the biomaterial and all data managers of Bonten et al Blood Pressure and Bedtime Aspirin 749 the department of Clinical Epidemiology of the LUMC for their help with the randomization of study subjects. We acknowledge Prof T. Stijnen of the Department of Medical Statistics of the LUMC for his statistical advice. We thank Margot de Waal and Henk de Jong of the Department of Public Health and Primary care of the LUMC for their help to include study participants. We express our gratitude to the general practitioners and all patients who participated in this study. All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation Sources of Funding This work was supported by the Netherlands Heart Foundation (grant number 2010B171). Disclosures None. References Downloaded from http://hyper.ahajournals.org/ by guest on June 14, 2017 1. Go AS, Mozaffarian D, Roger VL, et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–e245. doi: 10.1161/ CIR.0b013e31828124ad. 2.Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe: epidemiological update. Eur Heart J. 2013;34:3028– 3034. doi: 10.1093/eurheartj/eht356. 3. Turnbull F; Blood Pressure Lowering Treatment Trialists’ Collaboration. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362:1527–1535. 4.Egan BM, Zhao Y, Axon RN, Brzezinski WA, Ferdinand KC. Uncontrolled and apparent treatment resistant hypertension in the United States, 1988 to 2008. Circulation. 2011;124:1046–1058. doi: 10.1161/ CIRCULATIONAHA.111.030189. 5.Johnson AG, Nguyen TV, Day RO. Do nonsteroidal anti-inflammatory drugs affect blood pressure? A meta-analysis. Ann Intern Med. 1994;121:289–300. 6.Hermida RC, Fernández JR, Ayala DE, Iglesias M, Halberg F. Timedependent effects of ASA administration on blood pressure in healthy subjects. Chronobiologia. 1994;21:201–213. 7. Hermida RC, Ayala DE, Fernández JR, Mojón A, Alonso I, Silva I, Ucieda R, Codesido J, Iglesías M. Administration time-dependent effects of aspirin in women at differing risk for preeclampsia. Hypertension. 1999;34(4 Pt 2):1016–1023. 8. Hermida RC, Ayala DE, Calvo C, López JE, Fernández JR, Mojón A, Domínguez MJ, Covelo M. Administration time-dependent effects of aspirin on blood pressure in untreated hypertensive patients. Hypertension. 2003;41:1259–1267. doi: 10.1161/01.HYP.0000072335.73748.0D. 9. Hermida RC, Ayala DE, Iglesias M. Administration time-dependent influence of aspirin on blood pressure in pregnant women. Hypertension. 2003;41(3 Pt 2):651–656. doi: 10.1161/01.HYP.0000047876.63997.EE. 10.Hermida RC, Ayala DE, Calvo C, López JE. Aspirin administered at bedtime, but not on awakening, has an effect on ambulatory blood pressure in hypertensive patients. J Am Coll Cardiol. 2005;46:975–983. doi: 10.1016/j.jacc.2004.08.071. 11. Hermida RC, Ayala DE, Mojón A, Fernández JR. Ambulatory blood pressure control with bedtime aspirin administration in subjects with prehypertension. Am J Hypertens. 2009;22:896–903. doi: 10.1038/ajh.2009.83. 12.Snoep JD, Hovens MM, Pasha SM, Frölich M, Pijl H, Tamsma JT, Huisman MV. Time-dependent effects of low-dose aspirin on plasma renin activity, aldosterone, cortisol, and catecholamines. Hypertension. 2009;54:1136–1142. doi: 10.1161/HYPERTENSIONAHA.109.134825. 13. Hermida RC, Ayala DE, Calvo C, López JE, Mojón A, Rodríguez M, Fernández JR. Differing administration time-dependent effects of aspirin on blood pressure in dipper and non-dipper hypertensives. Hypertension. 2005;46:1060–1068. doi: 10.1161/01.HYP.0000172623.36098.4e. 14. Cohen MD, Rohtla BS, Lavery BS, Muller MD, Mittleman MD. Metaanalysis of the morning excess of acute myocardial infarction and sudden cardiac death. Am J Cardiol. 1997;79:1512–1516. 15. Tofler GH, Brezinski D, Schafer AI, Czeisler CA, Rutherford JD, Willich SN, Gleason RE, Williams GH, Muller JE. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med. 1987;316:1514–1518. doi: 10.1056/ NEJM198706113162405. 16. Di Minno G, Silver MJ, Murphy S. Monitoring the entry of new platelets into the circulation after ingestion of aspirin. Blood. 1983;61:1081–1085. 17. Patrono C, Ciabattoni G, Patrignani P, Pugliese F, Filabozzi P, Catella F, Davì G, Forni L. Clinical pharmacology of platelet cyclooxygenase inhibition. Circulation. 1985;72:1177–1184. 18. Grove EL, Hvas AM, Mortensen SB, Larsen SB, Kristensen SD. Effect of platelet turnover on whole blood platelet aggregation in patients with coronary artery disease. J Thromb Haemost. 2011;9:185–191. doi: 10.1111/j.1538-7836.2010.04115.x. 19. Würtz M, Hvas AM, Jensen LO, Kaltoft AK, Tilsted HH, Kristensen SD, Grove EL. 24-hour antiplatelet effect of aspirin in patients with previous definite stent thrombosis. Int J Cardiol. 2014;175:274–279. doi: 10.1016/j.ijcard.2014.05.013. 20. Cornélissen G, Halberg F, Prikryl P, Danková E, Siegelová J, Dusek J. Prophylactic aspirin treatment: the merits of timing. International Wombto-Tomb Chronome Study Group. JAMA. 1991;266:3128–3129. 21.Kriszbacher I, Ajtay Z, Koppán M, Bódis J. Can the time of taking aspirin influence the frequency of cardiovascular events? Am J Cardiol. 2005;96:608–610. doi: 10.1016/j.amjcard.2005.03.068. 22. Smith DH, Neutel JM, Lacourcière Y, Kempthorne-Rawson J. Prospective, randomized, open-label, blinded-endpoint (PROBE) designed trials yield the same results as double-blind, placebo-controlled trials with respect to ABPM measurements. J Hypertens. 2003;21:1291–1298. doi: 10.1097/01. hjh.0000059068.43904.0a. 23. Coleman JL, Wang JC, Simon DI. Determination of individual response to aspirin therapy using the Accumetrics Ultegra RPFA-ASA System. Point of Care. 2004;3:77–82. 24. Madsen EH, Saw J, Kristensen SR, Schmidt EB, Pittendreigh C, MaurerSpurej E. Long-term aspirin and clopidogrel response evaluated by light transmission aggregometry, VerifyNow, and thrombelastography in patients undergoing percutaneous coronary intervention. Clin Chem. 2010;56:839–847. doi: 10.1373/clinchem.2009.137471. 25.Octavio JA, Contreras J, Amair P, Octavio B, Fabiano D, Moleiro F, Omboni S, Groppelli A, Bilo G, Mancia G, Parati G. Time-weighted vs. conventional quantification of 24-h average systolic and diastolic ambulatory blood pressures. J Hypertens. 2010;28:459–464. doi: 10.1097/ HJH.0b013e328334f220. 26.Vaduganathan M, Alviar CL, Arikan ME, Tellez A, Guthikonda S, DeLao T, Granada JF, Kleiman NS, Ballantyne CM, Lev EI. Platelet reactivity and response to aspirin in subjects with the metabolic syndrome. Am Heart J. 2008;156:1002.e1–1002.e7. doi: 10.1016/j. ahj.2008.08.002. 27. Abdali K, Taghizadeh R, Amoei S, Tabatabai SHR. Comparison between aspirin and placebo on the mean of 24 hour blood pressure in pregnant women at preeclampsia risk, a double blind randomized controlled clinical trial. IJCBNM. 2013;1:83–91. 28. Dimitrov Y, Baguet JP, Hottelart C, Marboeuf P, Tartiere JM, Ducher M, Fauvel JP. Is there a BP benefit of changing the time of aspirin administration in treated hypertensive patients? Eur J Prev Cardiol. 2012;19:706– 711. doi: 10.1177/1741826711418165. 29. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25:932– 943. doi: 10.1161/01.ATV.0000160548.78317.29. 30.Scheer FA, Michelson AD, Frelinger AL III, Evoniuk H, Kelly EE, McCarthy M, Doamekpor LA, Barnard MR, Shea SA. The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors. PLoS One. 2011;6:e24549. doi: 10.1371/journal.pone.0024549. 31.Henry P, Vermillet A, Boval B, Guyetand C, Petroni T, Dillinger JG, Sideris G, Sollier CB, Drouet L. 24-hour time-dependent aspirin efficacy in patients with stable coronary artery disease. Thromb Haemost. 2011;105:336–344. doi: 10.1160/TH10-02-0082. 32. Bonten TN, Saris A, van Oostrom MJ, Snoep JD, Rosendaal FR, Zwaginga J, Eikenboom J, van der Meer PF, van der Bom JG. Effect of aspirin intake at bedtime versus on awakening on circadian rhythm of platelet reactivity. A randomised cross-over trial. Thromb Haemost. 2014;112:1209–1218. doi: 10.1160/TH14-05-0453. 33. Christensen KH, Grove EL, Wurtz M, Kristensen SD, Hvas AM. Reduced antiplatelet effect of aspirin during 24 hours in patients with coronary artery disease and type 2 diabetes. Platelets. In press. 34.Dillinger JG, Drissa A, Sideris G, Bal dit Sollier C, Voicu S, Manzo Silberman S, Logeart D, Drouet L, Henry P. Biological efficacy of twice 750 Hypertension April 2015 daily aspirin in type 2 diabetic patients with coronary artery disease. Am Heart J. 2012;164:600–606.e1. doi: 10.1016/j.ahj.2012.06.008. 35.Perneby C, Wallén NH, Rooney C, Fitzgerald D, Hjemdahl P. Doseand time-dependent antiplatelet effects of aspirin. Thromb Haemost. 2006;95:652–658. 36.Breet NJ, van Werkum JW, Bouman HJ, Kelder JC, Ten Berg JM, Hackeng CM. High on-aspirin platelet reactivity as measured with aggregation-based, cyclooxygenase-1 inhibition sensitive platelet function tests is associated with the occurrence of atherothrombotic events. J Thromb Haemost. 2010;8:2140–2148. doi: 10.1111/j.1538-7836.2010.04017.x. 37. Chen WH, Cheng X, Lee PY, Ng W, Kwok JY, Tse HF, Lau CP. Aspirin resistance and adverse clinical events in patients with coronary artery disease. Am J Med. 2007;120:631–635. doi: 10.1016/j.amjmed.2006.10.021. 38. Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation. 1989;79:733–743. 39. Elliott WJ. Cyclic and circadian variations in cardiovascular events. Am J Hypertens. 2001;14:291S–295S. Novelty and Significance What Is New? • The blood pressure lowering effect of aspirin intake at bedtime has never been studied in patients using aspirin for cardiovascular disease prevention • Whether aspirin intake at bedtime compared with intake on awakening reduces morning platelet reactivity has never been studied. Downloaded from http://hyper.ahajournals.org/ by guest on June 14, 2017 What Is Relevant? • Taking aspirin at bedtime compared with on awakening did not reduce blood pressure, which is in contrast with previous studies in healthy subjects • Platelet reactivity during morning hours was reduced by taking aspirin at bedtime, which could possibly be beneficial for patients taking aspirin on a daily basis. Summary In contrast to previous studies in other patient groups, bedtime intake of aspirin did not reduce blood pressure of patients taking aspirin for prevention of cardiovascular disease. However, bedtime intake of aspirin reduced platelet reactivity during the high risk morning hours. Time-Dependent Effects of Aspirin on Blood Pressure and Morning Platelet Reactivity: A Randomized Cross-Over Trial Tobias N. Bonten, Jaapjan D. Snoep, Willem J.J. Assendelft, Jaap Jan Zwaginga, Jeroen Eikenboom, Menno V. Huisman, Frits R. Rosendaal and Johanna G. van der Bom Downloaded from http://hyper.ahajournals.org/ by guest on June 14, 2017 Hypertension. 2015;65:743-750; originally published online February 17, 2015; doi: 10.1161/HYPERTENSIONAHA.114.04980 Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2015 American Heart Association, Inc. All rights reserved. Print ISSN: 0194-911X. Online ISSN: 1524-4563 The online version of this article, along with updated information and services, is located on the World Wide Web at: http://hyper.ahajournals.org/content/65/4/743 Data Supplement (unedited) at: http://hyper.ahajournals.org/content/suppl/2015/02/17/HYPERTENSIONAHA.114.04980.DC1 http://hyper.ahajournals.org/content/suppl/2016/04/10/HYPERTENSIONAHA.114.04980.DC2 Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document. Reprints: Information about reprints can be found online at: http://www.lww.com/reprints Subscriptions: Information about subscribing to Hypertension is online at: http://hyper.ahajournals.org//subscriptions/ CONSORT 2010 checklist of information to include when reporting a randomised trial* Section/Topic Item No Checklist item Reported on page No Title and abstract 1a 1b Identification as a randomised trial in the title Structured summary of trial design, methods, results, and conclusions (for specific guidance see CONSORT for abstracts) 1 2,3 2a 2b Scientific background and explanation of rationale Specific objectives or hypotheses 4 5 Interventions 3a 3b 4a 4b 5 5,6 n.a 5,6 5,6 5,6 Outcomes 6a Sample size 6b 7a 7b Description of trial design (such as parallel, factorial) including allocation ratio Important changes to methods after trial commencement (such as eligibility criteria), with reasons Eligibility criteria for participants Settings and locations where the data were collected The interventions for each group with sufficient details to allow replication, including how and when they were actually administered Completely defined pre-specified primary and secondary outcome measures, including how and when they were assessed Any changes to trial outcomes after the trial commenced, with reasons How sample size was determined When applicable, explanation of any interim analyses and stopping guidelines 8a 8b 9 Method used to generate the random allocation sequence Type of randomisation; details of any restriction (such as blocking and block size) Mechanism used to implement the random allocation sequence (such as sequentially numbered containers), describing any steps taken to conceal the sequence until interventions were assigned 6 6 6 10 Who generated the random allocation sequence, who enrolled participants, and who assigned participants to interventions If done, who was blinded after assignment to interventions (for example, participants, care providers, those 5,6 Introduction Background and objectives Methods Trial design Participants Randomisation: Sequence generation Allocation concealment mechanism Implementation Blinding CONSORT 2010 checklist 11a 6,7,8 n.a 8 n.a. n.a Page 1 Statistical methods Results Participant flow (a diagram is strongly recommended) Recruitment 11b 12a 12b n.a 8,9 8,9 Ancillary analyses 17b 18 Harms 19 For each group, the numbers of participants who were randomly assigned, received intended treatment, and were analysed for the primary outcome For each group, losses and exclusions after randomisation, together with reasons Dates defining the periods of recruitment and follow-up Why the trial ended or was stopped A table showing baseline demographic and clinical characteristics for each group For each group, number of participants (denominator) included in each analysis and whether the analysis was by original assigned groups For each primary and secondary outcome, results for each group, and the estimated effect size and its precision (such as 95% confidence interval) For binary outcomes, presentation of both absolute and relative effect sizes is recommended Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing pre-specified from exploratory All important harms or unintended effects in each group (for specific guidance see CONSORT for harms) Discussion Limitations Generalisability Interpretation 20 21 22 Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses Generalisability (external validity, applicability) of the trial findings Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence 16,17 17 15,16 Other information Registration Protocol 23 24 Registration number and name of trial registry Where the full trial protocol can be accessed, if available Funding 25 Sources of funding and other support (such as supply of drugs), role of funders 3, 5 Available from authors 10 Baseline data Numbers analysed Outcomes and estimation 13a assessing outcomes) and how If relevant, description of the similarity of interventions Statistical methods used to compare groups for primary and secondary outcomes Methods for additional analyses, such as subgroup analyses and adjusted analyses 13b 14a 14b 15 16 17a 11 11 (+figure 2) 11 n.a. Table 1 11 + figure 2 11,12 n.a. 11,12 12,13 *We strongly recommend reading this statement in conjunction with the CONSORT 2010 Explanation and Elaboration for important clarifications on all the items. If relevant, we also recommend reading CONSORT extensions for cluster randomised trials, non-inferiority and equivalence trials, non-pharmacological treatments, herbal interventions, and pragmatic trials. Additional extensions are forthcoming: for those and for up to date references relevant to this checklist, see www.consort-statement.org. CONSORT 2010 checklist Page 2 Online Supplement Aspirin intake at bedtime: does it lower blood pressure and morning platelet reactivity in patients with stable cardiovascular disease? A randomized crossover trial Table S1 Table S2 Table S3 Table S4 Table S5 1 Table S1. Subgroup analysis of the effect of Aspirin intake on awakening or at bedtime on mean 24-hour blood pressure Subgroup n Difference (Bedtime – P-value† Awakening) [95% CI]* β-blocker use No 121 -0.3 [-1.7 to 1.2] / -0.8 [-1.7 to 0.2] Yes 142 0.1 [-1.1 to 1.3] / -0.3 [-1.2 to 0.4] No 106 -0.2 [-1.5 to 1.0] / -1.0 [-1.9 to -0.2] Yes 157 0.0 [-1.3 to 1.4] / -0.2 [-1.0 to 0.6] No 51 0.3 [-1.5 to 2.1] / -1.3 [-2.7 to 0.0] Yes 212 -0.2 [-1.2 to 0.9] / -0.4 [-1.0 to 0.3] >140 mmHg 92 0.9 [-0.8 to 2.5] / 0.0 [-1.1 to 1.2] ≤140 mmHg 171 -0.6 [-1.7 to 0.6] / -0.9 [-1.6 to -0.2] 0.80 Angiotensin inhibitor use‡ 0.68 Blood pressure lowering drugs use§ 0.78 Baseline systolic office blood pressure 0.14 All blood pressure differences are depicted as systolic [95% CI] / diastolic [95% CI] blood 2 pressure, in mmHg; *Mean difference and 95% confidence interval (CI) obtained from paired t-test within each subgroup; †P-value for interaction obtained from linear mixed model analysis; ‡Angiotensin receptor inhibitors: use of ace-inhibitors and/or angiotensin-2-inhibitors. § Blood pressure lowering drugs: β-blockers, α-blockers, ace-inhibitors, angiotensin-II inhibitors, calcium antagonists, thiazide and loop diuretics, nitrates (daily use). 3 Table S2. Mean 24-hour, day- and night ambulatory blood pressure values (mmHg) according to time of aspirin administration in the secondary analysis population (n=150) Value Aspirin on Aspirin at Mean difference awakening bedtime (bedtime – awakening) [95% CI]* 24-hour SBP 125 ± 10 125 ± 9 0.0 [-1.1 to 1.1] 24-hour DBP 78 ± 8 77 ± 8 -0.4 [-1.2 to 0.3] Day SBP 129 ± 10 129 ± 10 0.1 [-1.2 to 1.3] Day DBP 81 ± 9 80 ± 8 -0.5 [-1.3 to 0.2] Night SBP 115 ± 12 115 ± 12 0.0 [-1.5 to 1.5] Night DBP 68 ± 10 68 ± 9 -0.2 [-1.2 to 0.7] *Mean difference and 95% CI obtained with paired t-tests. Values are mean ± standard deviation. SBP: systolic blood pressure; DBP: diastolic blood pressure; CI: confidence interval 4 Table S3. Subgroup analysis of the effect of low-dose aspirin intake on awakening or at bedtime on morning platelet reactivity (n=133) Subgroup n Aspirin on Aspirin at awakening bedtime Difference (Bedtime - Awakening) Pvalue† [95% CI]* Diabetes No 115 455 ± 61 429 ± 50 -26 [-40 to -13] Yes 18 455 ± 55 463 ± 71 8 [-34 to 50] 18.5 – 25 37 452 ± 52 425 ± 52 -27 [-47 to -8] 25 – 30 60 454 ± 66 439 ± 58 -15 [-36 to 7] 0.41§ ≥ 30 36 459 ± 58 432 ± 51 -27 [-53 to -1] 0.94§ No 110 453 ± 60 433 ± 57 -20 [-35 to -5] Yes 23 463 ± 61 433 ± 43 -29 [-58 to -1] 441 ± 57 424 ± 57 -16 [-93 to 9] 0.03 BMI (kg/m2)‡ Smoking Mean platelet volume (fl), quartile (range) 1 (9.1 – 5 0.77 10.1) 2 (10.2 – 457 ± 60 441 ± 55 -10 [-46 to 25] 0.77§ 471 ± 68 443 ± 55 -25 [-53 to 4] 0.49§ 445 ± 48 427 ± 59 -18 [-45 to 9] 0.98§ 10.6) 3 (10.7 – 11.3) 4 (11.4 – 12.6) All platelet reactivity values are depicted in Aspirin Reaction Units (ARU)±standard deviation. Higher ARU represents higher platelet reactivity. * Mean difference and 95% CI obtained from paired t-test within each subgroup † P-value for interaction obtained from linear mixed model analysis ‡ BMI classified according to World Health Organizations’ classification of obesity § P-value for interaction with the first group as reference group 6 Table S4. Side effects and relation with timing of aspirin intake of subjects that did not complete study follow-up (n=26) Patient Period Timing of code of drop- Aspirin intake side effect of out at drop-out aspirin 1 At bedtime 105 Reason drop-out Stopped aspirin use after advise Related to No cardiologist 113 1 On awakening Stomach pain after switch from Yes evening intake to intake on awakening 132 1 At bedtime Study participation too aggravating No 151 1 On awakening Withdrawal of consent to participate No in other clinical trial 173 1 At bedtime Study participation too aggravating No 180 1 At bedtime Study participation too aggravating No 250 1 On awakening Stomach pain after switch from Yes evening intake to intake on awakening 251 1 At bedtime Study participation too aggravating No 327 1 On awakening Study participation too aggravating No 329 1 At bedtime Stopped aspirin use after head No trauma; advise of first aid physician 365 1 At bedtime Study participation too aggravating 7 No 436 1 On awakening Study participation too aggravating No 447 1 On awakening Study participation too aggravating No 455 1 At bedtime Study participation too aggravating No 462 1 At bedtime Study participation too aggravating No 203 2 At bedtime Study participation too aggravating No 271 2 At bedtime Study participation too aggravating No 334 2 On awakening Stopped aspirin use after advise No cardiologist 344 2 On awakening Study participation too aggravating No 366 2 On awakening Switch to vitamin k antagonist No instead of aspirin after advise cardiologist 368 2 On awakening Switch to vitamin k antagonist No instead of aspirin after advise cardiologist 387 2 At bedtime Switch to vitamin k antagonist No instead of aspirin after advise cardiologist 405 2 At bedtime Did not want to take aspirin at No bedtime due to practical reasons 417 2 On awakening Study participation too aggravating No 465 2 At bedtime Headache after switch from morning Possible intake to intake at bedtime 437 2 On awakening Study participation too aggravating 8 No Table S5. Self-reported side effects of randomized study subjects at baseline and subjects who completed study follow-up Side effect At Baseline During study follow-up (n=290), n (%) (n=264), n (%) Aspirin Aspirin on awakening at bedtime p-value* Dyspepsia 15 (5.2) 12 (4.5) 12 (4.5) 1.00 Nausea 8 (2.8) 4 (1.5) 9 (3.4) 0.18 Heartburn 27 (9.3) 16 (6.1) 20 (7.6) 0.50 Nose bleeding 13 (4.5) 9 (3.4) 6 (2.3) 0.55 Bruises 45 (15.5) 32 (12.1) 35 (13.3) 0.75 Bloody stool 4 (1.4) 5 (1.9) 5 (1.9) 1.00 *P-value obtained by McNemar’s test 9 Ensayos clínicos Efectos de la aspirina dependientes del tiempo sobre la presión arterial y la reactividad plaquetaria por la mañana Estudio cruzado aleatorizado Tobias N. Bonten, Jaapjan D. Snoep, Willem J.J. Assendelft, Jaap Jan Zwaginga, Jeroen Eikenboom, Menno V. Huisman, Frits R. Rosendaal, Johanna G. van der Bom Resumen: la aspirina es utilizada por millones de pacientes a diario para la prevención de enfermedades cardiovasculares (ECV). Estudios anteriores sugieren que la toma de aspirina al acostarse reduce la presión arterial en comparación con la toma al despertarse, hecho que nunca se ha estudiado en pacientes con ECV. Además, la reactividad plaquetaria y la incidencia de ECV son mayores durante las horas de la mañana. La toma de aspirina al acostarse puede atenuar la reactividad plaquetaria por la mañana. El presente estudio clínico examinó el efecto de la toma de aspirina al acostarse en comparación con la toma al despertarse en la medición ambulatoria de la presión arterial de 24 horas y la reactividad plaquetaria por la mañana en pacientes que utilizaban aspirina para la prevención de ECV. En el presente estudio aleatorizado, cruzado y sin enmascaramiento se aleatorizó a 290 pacientes a fin de que tomaran 100 mg de aspirina al despertarse o al acostarse durante 2 períodos de 3 meses. Al final de cada período, se analizaron la presión arterial de 24 horas y la reactividad plaquetaria por la mañana. La población de análisis primario incluyó 263 pacientes (presión arterial) y 133 pacientes (reactividad plaquetaria). La toma de aspirina al acostarse no redujo la presión arterial en comparación con la toma al despertarse (diferencia sistólica/diastólica: –0,1 [intervalo de confianza del 95%, –1,0; 0,9]/–0,6 [intervalo de confianza del 95%, –1,2; 0,0] mm Hg). La reactividad plaquetaria en horas de la mañana se redujo con la toma de aspirina al acostarse (diferencia: –22 unidades de reacción a la aspirina [intervalo de confianza del 95%, –35; –9]). La toma de una dosis baja de aspirina al acostarse en comparación con la toma al despertarse no redujo la presión arterial en pacientes con ECV. No obstante, la aspirina al acostarse redujo la actividad plaquetaria por la mañana. Se requieren futuros estudios para evaluar el efecto de esta prometedora y simple intervención en el exceso de eventos cardiovasculares durante las horas de alto riesgo de la mañana. (Hypertension. 2015;65:743-750. DOI: 10.1161/ HYPERTENSIONAHA.114.04980.) • Suplemento de información on-line Palabras clave: aspirina ■ presión arterial ■ cronoterapia ■ activación plaquetaria L a enfermedad cardiovascular (ECV) continúa siendo la causa principal de morbimortalidad a nivel mundial.1,2 Uno de los factores de riesgo modificable y de mayor importancia de la ECV es la presión arterial. Incluso pequeñas reducciones de la presión arterial disminuyen significativamente el riesgo de infarto de miocardio y accidente cerebrovascular.3 No obstante, casi la mitad de los pacientes con hipertensión continúan sin controlarla, a pesar del uso de antihipertensivos.4 Por esta razón, resultan necesarias pequeñas intervenciones para mejorar el control de la presión arterial. Tradicionalmente se había asumido que la aspirina no producía ningún efecto sobre la presión arterial,5 pero en estudios recientes se demostró que la toma de aspirina al acostarse en comparación con la toma al despertarse redujo considerablemente la presión arterial.6-11 Además, anteriormente hallamos que la toma de aspirina al acostarse en comparación la toma al despertarse redujo la actividad de la renina plasmática y las excreciones de cortisol, dopamina y norepinefrina en el transcurso de 24 horas.12 Sin embargo, todos los estudios pre- vios incluyeron sujetos sanos, mujeres embarazadas o pacientes con hipertensión leve.6-11,13 Si el efecto de la toma de aspirina al acostarse sobre la presión arterial también se da en el caso de los pacientes que ya estaban usando aspirina para la prevención de ECV, el simple cambio del momento de la toma –de la hora de despertarse a la hora de acostarse– podría reducir sustancialmente el riesgo de eventos cardiovasculares recurrentes. Por otra parte, la agregación plaquetaria alcanza su punto máximo durante las horas de la mañana, lo que se considera que contribuye con el pico observado de ECV entre las 6 y las 12 a. m.14,15 Debido a su breve semivida, la aspirina solamente inhibe las plaquetas que están presentes en el horario de la toma, mientras que en sujetos sanos se liberan nuevas plaquetas a una velocidad del 10% por día.16,17 Por consiguiente, justo antes de cada toma de aspirina, estas plaquetas recién liberadas no son inhibidas y pueden inducir agregación plaquetaria.18,19 No obstante, sería deseable lograr una inhibición óptima de la agregación plaquetaria, en particular durante las horas de la mañana de alto riesgo. Con- Recibido el 25 de noviembre de 2014; primera decisión el 11 de diciembre de 2014; revisión aceptada el 25 de enero de 2015. Del Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, los Países Bajos (T.N.B., J.D.S., F.R.R., J.G.v.d.B.); Department of Primary and Community Care, Radboud University Medical Center, Nijmegen, los Países Bajos (W.J.J.A.); Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, los Países Bajos (W.J.J.A.); JJ van Rood Center for Clinical Transfusion Research, Sanquin Research, Leiden, los Países Bajos (J.J.Z., J.G.v.d.B.); y Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, los Países Bajos (J.E., M.V.H.). El suplemento de información con este artículo se encuentra disponible únicamente on-line en http://hyper.ahajourna]s.org/lookup/suppl/ doi:10.1161/HYPERTENSIONAHA. 114.04980/-/DC1 Dirigir la correspondencia a: T.N. Bonten, Leiden University Medical Center, Department of Clinical Epidemiology, C7-P, PO Box 9600, 2300 RC Leiden, The Netherlands. Correo electrónico [email protected] © 2015 American Heart Association, Inc. Hypertension se encuentra disponible en http://hyper.ahajournals.org DOI: 10.1161/HYPERTENSIONAHA.114.04980 Hypertension # 2-V2.indd 40 27/05/2015 10:40:16 a.m. Bonten et al forme a lo sugerido por autores anteriores, la toma de aspirina al acostarse podría atenuar el pico de reactividad plaquetaria por la mañana, pero ese hecho nunca se evaluó en un estudio clínico.20,21 Para evaluar si la toma de aspirina al acostarse en comparación con la toma al despertarse reduce la presión arterial y la reactividad plaquetaria por la mañana, efectuamos un estudio cruzado y aleatorizado en pacientes que utilizaban dosis bajas de aspirina para la prevención de ECV. Métodos 41 Presión arterial y toma de aspirina al acostarse extracción de sangre el día 2 fueron similares para cada paciente en cada visita. Criterios de valoración Presión arterial Se midió la PA inicial mediante un dispositivo automático (dispositivo Mobil-O-Graph NG; IEM GmbH, Alemania) cada 2 minutos en posición sentada, después de 10 minutos de descanso. Se usó un promedio de 6 mediciones para determinar la presión Resumen del diseño La Figura 1 presenta el resumen del diseño del estudio. Se efectuó un estudio prospectivo, aleatorizado, sin enmascaramiento, con criterio de valoración enmascarado (PROBE), cruzado y con 2 períodos, en un centro único en los Países Bajos, y se registró en www.clinicaltrials.gov/ct2/show/NCT01379079. Se han documentado previamente los beneficios del diseño PROBE y su validez para estudios que miden la presión arterial ambulatoria.22 El estudio se efectuó de conformidad con la Declaración de Helsinki, fue aprobado por el Comité de Ética de Leiden University Medical Center (LUMC), y todos los sujetos otorgaron su consentimiento informado por escrito. Contexto y participantes Se reclutaron pacientes de entre 18 y 75 años de edad que tomaban dosis bajas (80-100 mg) de aspirina para la prevención de ECV secundaria, provenientes de consultorios de médicos de cabecera en Leiden, los Países Bajos. Los criterios de exclusión fueron presión arterial (PA) inicial <120/70 o >160/100 mm Hg, uso de otros antiagregantes plaquetarios o anticoagulantes, cambio de antihipertensivos en los 3 meses previos al período inicial, uso de antiinflamatorios no esteroideos, tener un empleo por turnos, indicios de hipertensión arterial secundaria (p. ej., feocromocitoma) y embarazo. Aleatorización e intervenciones Se llevó a cabo la aleatorización con un código de aleatorización generado por computadora por parte de una persona independiente del Departamento de Epidemiología Clínica del LUMC, el cual fue inaccesible para los investigadores. Se aleatorizó a los sujetos elegibles (proporción 1:1) para tomar aspirina al despertarse, seguido de aspirina al acostarse, o en el orden opuesto, durante 2 períodos de intervención de 3 meses (Figura 1). Los 2 períodos de intervención no fueron separados por un período de lavado debido a que no se consideró ético la interrupción de la aspirina en los pacientes incluidos en el estudio. La duración de cada período de intervención fue análoga a los estudios anteriores.9-11 Todos los sujetos recibieron 100 mg de aspirina efervescente (carbasalato cálcico, Vemeda Manufacturing, los Países Bajos). Al final de cada período de intervención, los sujetos visitaron el centro de investigación durante 2 días consecutivos. El día 1, se inició la medición ambulatoria de la presión arterial (MAPA) de 24 horas, entre las 8 y las 12 a. m. y los sujetos tomaron aspirina en el mismo horario que lo hicieron durante los 3 meses anteriores. El día 2, los sujetos se abstuvieron de tomar aspirina por la mañana, se detuvo la MAPA, y se les extrajo una muestra de sangre. El horario del inicio de la MAPA el día 1 y la Hypertension # 2-V2.indd 41 Visita 1 Visita 2 3 meses Visita 3 3 meses Aspirina al despertarse Aspirina al acostarse Aspirina al acostarse Aspirina al despertarse 290 pacientes Figura 1. Diseño del estudio. Visita 1, Selección en función de los criterios de inclusión y exclusión. Visitas 2 y 3, medición ambulatoria de presión arterial (MAPA), extracción de sangre durante las horas de la mañana, cuestionario. arterial inicial. Como criterio de valoración primario, se llevó a cabo la MAPA durante la rutina diaria normal de los participantes con un dispositivo Mobil-O-Graph NG (IEM GmbH, Alemania) validado y calibrado. Las mediciones comenzaron entre las 8 y 12 a. m., y se usó el mismo dispositivo en cada visita. Se ajustó el manguito del esfigmomanómetro a la circunferencia del brazo y se colocó en el brazo no dominante. Se midieron automáticamente la PA sistólica y diastólica cada 20 minutos durante el día y cada 30 minutos por la noche durante 24 horas consecutivas, con la pantalla apagada para que los sujetos no vieran las mediciones de la PA. En el diario se registraron los horarios en los que el sujeto se acostó y se despertó. La MAPA se consideró válida si ≥ 70% de las mediciones resultaron válidas, si el tiempo de sueño durante la MAPA fue de entre 6 y 12 horas, y si no faltaron datos durante > 2 horas. Reactividad plaquetaria Como criterio de valoración secundario, se midió la reactividad plaquetaria durante las horas de la mañana (entre las 8 y 12 a. m.). La mañana que se extrajo la muestra de sangre, los sujetos se abstuvieron de tomar aspirina. Se extrajeron muestras de sangre sin estasis de la vena antecubital, se midió la reactividad plaquetaria con VerifyNow® Aspirin Assay (Accumetrics, San Diego, EE. UU.) y se informó en unidades de reacción a la aspirina (aspirin reaction units, ARU).23 Cuestionarios, cumplimiento y preferencia del paciente Los sujetos completaron un cuestionario para evaluar los criterios de elegibilidad, los antecedentes médicos, el uso de medicamentos y el ritmo cronobiológico en el período inicial. 27/05/2015 10:40:16 a.m. 42 Hypertension Junio 2015 Se completó la información faltante con los registros del médico de cabecera o de la farmacia. En cada visita de seguimiento, se registraron los efectos secundarios y el cambio de medicación mediante cuestionarios. Los sujetos recibieron indicaciones de tomar la aspirina dentro de la hora de haberse despertado o una hora antes de acostarse. Se evaluó el cumplimiento y se optimizó con pastilleros electrónicos (Evalan, Ámsterdam, los Países Bajos) que registraron el horario de la toma del medicamento y enviaron un mensaje de texto (SMS) en caso de que los sujetos no cumplieran. Además, en cada visita se realizó el recuento de comprimidos. Los participantes y los médicos de cabecera recibieron indicaciones de no cambiar un medicamento ni iniciar la administración de uno nuevo durante el estudio, lo que se verificó mediante cuestionarios en cada visita de seguimiento. Análisis estadístico Para detectar una diferencia interindividual de 3 mm Hg en la presión arterial con 80% de potencia en un nivel de significación del 5%, calculamos un tamaño de muestra requerido de 250 pacientes. Asumimos una desviación estándar intraindividual de 12,9 mm Hg, según resultó de un estudio anterior.12 Con una es- Inicio del estudio: septiembre de 2011 Finalización del estudio: septiembre 2013 timación de abandono del 10% y una MAPA inválida del 5%, aleatorizamos a 290 sujetos. Tal como se planificó de antemano, se midió la reactividad plaquetaria en los primeros 160 pacientes consecutivos, lo cual arrojó una potencia del 90% para detectar una diferencia de 17 ARU a un nivel de significación del 5%. Para este cálculo, usamos una desviación estándar intraindividual de 46,85 ARU.24 Las características continuas se describen como media ± desviación estándar (DE) si se distribuyen normalmente; de lo contrario, se describen como mediana (amplitud intercuartílica [AIC]). Las variables categóricas se expresan como números (porcentajes). Los valores de MAPA se editaron de acuerdo con los criterios convencionales para eliminar los errores de medición y los valores atípicos. Debido a que la frecuencia de la toma de muestras fue más densa durante el día (3 veces/hora) que durante la noche (2 veces/hora), calculamos una media ponderada de la PA general, tal como se sugirió previamente 25: (media de PA diurna x cantidad de mediciones diurnas) + (media de PA nocturna x cantidad de mediciones nocturnas) cantidad de mediciones diurnas + cantidad de mediciones nocturnas Se calculó la media de PA diurna y nocturna como Evaluados a los fines de elegibilidad (n = 3.479) Aleatorizados (n = 290) Asignados a toma diurna (n = 145) Visita 2 (3 meses) Retiro de consentimiento (n = 6) Participación muy agravante (n = 4) Dispepsia (n = 2) Asignación Seguimiento suma de las mediciones diurnas o nocturnas cantidad de mediciones diurnas o nocturnas No incluidos (n = 3.189) No cumplieron con los criterios de inclusión (n =1.704) Rehusaron participar (n = 655) No respondieron la invitación (n = 527) Excluidos por otras razones* (n = 303) Asignados a la toma nocturna (n = 145) Visita 2 (3 meses) Retiro de consentimiento (n = 9) Participación muy agravante (n = 7) Dejó de tomar aspirina (n = 2) Pasaron a toma nocturna (n = 139) Pasaron a toma diurna (n = 136) Visita 3 (6 meses) Retiro de consentimiento (n = 5) Participación muy agravante (n = 4) Dejó de tomar aspirina (n = 1) Visita 3 (6 meses) Retiro de consentimiento (n = 6) Participación muy agravante (n = 3) Dejó de tomar aspirina (n = 3)) Completaron el período del estudio de 6 meses (n = 134) Completaron el período del estudio de 6 meses (n = 130) Población de análisis primario Criterio de valoración primario: MAPA (n = 134) Criterio de valoración secundario: reactividad plaquetaria (n = 71) Población de análisis secundario (n = 73) Excluidos (n = 61) MAPA inválida en visita 1 y/o visita 2 (n = 30) Cambio de antihipertensivos (n = 8) Cumplimiento durante todo el estudio <90% (n = 23) Poblaciones de análisis Población de análisis primario Criterio de valoración primario: MAPA (n = 129 †) Criterio de valoración secundario: reactividad plaquetaria (n = 65) Población de análisis secundario (n = 77) Excluidos (n = 52) MAPA inválida en visita 1 y/o visita 2 (n = 27) Cambio de antihipertensivos (n = 6) Cumplimiento durante todo el estudio < 90% (n = 19) Figura 2. Distribución de pacientes. MAPA indica medición ambulatoria de la presión arterial. *Otras razones: dejó de tomar aspirina antes de la inclusión, no pudo participar en el estudio clínico según el criterio del médico de cabecera, se mudó, no habla holandés. †Un sujeto se negó a la MAPA en la última visita de seguimiento. Hypertension # 2-V2.indd 42 27/05/2015 10:40:17 a.m. Bonten et al Presión arterial y toma de aspirina al acostarse Tabla 1. Características clínicas iniciales de los participantes del estudio aleatorizados (n = 290)* Variable Sexo (M/F) Edad, años Grupo de toma de aspirina al despertarse–al acostarse (n = 145) Grupo de toma de aspirina al acostarse–al despertarse (n = 145) 106/39 106/39 64±7 64±7 21 (15) 28 (19) Índice de masa corporal, kg/m2 28,4±4,7 28-1±4,6 Presión arterial sistólica, mm Hg 137±10 137±10 Fumadores actuales Presión arterial diastólica, mm Hg 88±8 88±8 17 (12) 14 (10) Infarto de miocardio 53 (37) 59 (41) Angina de pecho estable 59 (41) 61 (42) Accidente cerebrovascular / accidente isquémico transitorio 28 (19) 23 (16) Fibrilación auricular 14 (10) 13 (9) Arteriopatía periférica 12 (8) 9 (6) Otro † 3 (2) 1 (1) Diabetes Antecedentes cardiovasculares Uso de aspirina en el período inicial Al despertarse 106 (73) 100 (69) Duración, años 6 (3-11) 6 (4-14) Cantidad de fármacos antihipertensivos ‡ 2 (1-2,5) 2 (1-3) β-bloqueantes 74 (51) 80 (55) Inhibidores de la ECA 60 (41) 55 (38) Inhibidores de la angiotensina II 37 (26) 33 (23) Antagonistas del calcio 29 (20) 27 (19) Uso de medicación Diuréticos 37 (26) 46 (32) Hipolipemiantes 116 (80) 123 (85) *Los valores continuos se presentan como media ± desviación estándar (DE) o medianas + amplitud intercuartílica si se distribuyen normalmente. Los valores categóricos se presentan como número (%). † Otras enfermedades cardiovasculares: enfermedad de la válvula cardíaca (n = 3), síndrome mielodisplásico (n = 1). ‡ Antihipertensivos: β-bloqueantes, α-bloqueantes, inhibidores de la ECA, inhibidores de la angiotensina II, antagonistas del calcio, diuréticos tiazídicos y del asa, nitratos (uso diario). De los diarios se obtuvieron los horarios de inicio del día o de la noche. El criterio de valoración primario se evaluó en la población de análisis primario y secundario. La población de análisis primario incluyó a todos los sujetos aleatorizados que completaron las mediciones de los criterios de valoración. La población de análisis secundario excluyó a sujetos con ≥ 1 MAPA inválida, cambio de antihipertensivos o cumplimiento < 90%. Se realizaron las pruebas de la t para datos apareados a fin de analizar la PA diurna, nocturna y media general después de la toma de aspirina al despertarse y al acostarse. Además, se usaron modelos lineales mixtos para evaluar los efectos del tratamiento y Hypertension # 2-V2.indd 43 43 los efectos del período o residuales. Se especificaron previamente análisis de subgrupos para usuarios de β-bloqueantes, inhibidores del sistema renina-angiotensina (usuarios frente a no usuarios), usuarios frente a no usuarios de ≥ 1 antihipertensivo y sujetos con PA sistólica inicial > 140 frente a ≤ 140 mm Hg. Se analizó criterio de valoración secundario de reactividad plaquetaria con la prueba de la t para datos apareados y modelos lineales mixtos. Los sujetos que olvidaron tomar aspirina el día anterior a la medición de la reactividad plaquetaria (n = 3) quedaron excluidos del análisis. Se especificaron previamente los análisis de subgrupos para sujetos con diabetes, fumadores actuales (sí vs. no) y valores promedio del volumen plaquetario (dividido en cuartiles). A pesar de que no se especificó previamente, se llevó a cabo un análisis de subgrupo adicional en función del índice de masa corporal debido a que la obesidad, como marcador del síndrome metabólico, puede estar relacionada con la reactividad plaquetaria.26 Los efectos secundarios y las preferencias de los pacientes se analizaron de manera descriptiva y utilizando la prueba de McNemar. Todos los análisis se llevaron a cabo con SPSS 20.0 (IBM corp., EE. UU.) y fueron bilaterales, con un nivel de significación de 0,05. Resultados Población del estudio y cumplimiento Entre junio de 2011 y marzo de 2013, se seleccionó a 3.479 sujetos en 30 consultorios de médicos de cabecera de los cuales 1.704 no cumplieron con los criterios de inclusión, fundamentalmente debido a la edad de > 75 años (n = 1.080) y el uso de otros fármacos de inhibición plaquetaria (n = 386; Figura 2). Se aleatorizó un total de 290 sujetos, y las características iniciales fueron similares entre los grupos (Tabla 1). El seguimiento del estudio se discontinuó por parte de 26 sujetos, principalmente porque la participación en el estudio era demasiado agravante (18/26; 70%). Las poblaciones de análisis primario y secundario comprendieron 263 y 150 sujetos, respectivamente, para la evaluación del criterio de valoración primario. Las mediciones a los fines de la reactividad plaquetaria del criterio de valoración secundario estuvieron completas en 136 sujetos. El cumplimiento, conforme a lo medido por los pastilleros electrónicos y el recuento de comprimidos, fue elevado y similar entre la toma de aspirina al despertarse (99% [97%-100%] y 100% [100%-100%], respectivamente) y la toma al acostarse (98% [94%-100%] y 100% [100%-100%]). Presión arterial El perfil circadiano de MAPA de 24 horas después de 3 meses de toma de aspirina al despertarse y 3 meses de toma de aspirina al acostarse se exhibe en la Figura 3. La media (DE) de la presión arterial sistólica y diastólica de 24 horas fue de 127 (12) y 79 (9) mm Hg con toma de aspirina al despertarse, mientras que con toma de aspirina al acostarse fue de 127 (12) y 78 (8); esto dio como resultado diferencias de –0,1 mm Hg (intervalo de confianza del 95%, –1,0 a 0,9) y –0,6 mm Hg (intervalo de confianza del 95%, –1,2 a 0,0). Además, los valores de la presión arterial sistólica y diastólica diurna y nocturna no difirieron con el horario de la toma de aspirina (Tabla 2). El análisis de modelos mixtos demostró los mismos resultados y ninguna evidencia de efectos residuales o del período (datos no mostrados). Además, los hallazgos entre los subgrupos de sujetos que usaban o no 27/05/2015 10:40:17 a.m. 44 Hypertension Junio 2015 Presión arterial sistólica (mm Hg) Aspirina al despertarse Aspirina al acostarse Media de 24 horas al despertarse: 127,2 Media de 24 horas al acostarse: 127,2 Horario (horas después de despertarse) Aspirina al despertarse Aspirina al acostarse Presión arterial diastólica (mm Hg) Media de 24 horas al despertarse: 78,6 Media de 24 horas al acostarse 78, 0 Horario (horas después de despertarse) Figura 3. Efecto de la toma de una dosis baja de aspirina al acostarse en comparación con una toma al despertarse en el perfil de presión arterial ambulatoria de 24 horas en la población de análisis primario (n = 263). A, presión arterial sistólica. B, presión arterial diastólica. Cada gráfico muestra medias y errores estándar por hora de la presión arterial medida con una toma de dosis baja de aspirina al despertarse (línea negra continua) y una toma de dosis baja de aspirina al acostarse (línea gris discontinua). Las horas en el eje x se refieren a las horas después de despertarse de un período de sueño nocturno. El área sombreada representa el período nocturno promedio de todos los sujetos. β-bloqueantes, inhibidores de la angiotensina, antihipertensivos en general o sujetos con PA inicial en consultorio de > 140 o ≤ 140 mm Hg fueron similares a los resultados generales (Tabla S1 del Suplemento de información on-line). Finalmente, en el análisis secundario, que comprendió únicamente a los pacientes con Hypertension # 2-V2.indd 44 MAPA válida en ambas visitas que no cambiaron su medicación antihipertensiva entre la visita 2 y la visita 3, y que cumplieron el tratamiento ≥ 90%, según lo registrado por los pastilleros electrónicos, la toma de aspirina al acostarse no se relacionó con una reducción del valor promedio de la presión arterial de 24 horas o 27/05/2015 10:40:17 a.m. Bonten et al Presión arterial y toma de aspirina al acostarse Tabla 2. Valores promedio de presión arterial ambulatoria diurna y nocturna (mm Hg), de 24 horas, de acuerdo con el horario de administración de aspirina en la población de análisis primario (n = 263) Aspirina al despertarse Aspirina al acostarse Diferencia promedio (al acostarse–al despertarse) (IC del 95%)* PAS de 24 horas 127±12 127±12 –0,1 [–1,0 a 0,9] PAD de 24 horas 79±9 78±8 –0,6 [–1,2 a 0,0] PAS diurna 131±12 131±12 0,0 [–1,0 a 1,0] PAD diurna 82±9 81±9 –0,6 [–1,2 a 0,1] PAS nocturna 117±15 117±14 –0,1 [–1,4 a 1,1] PAD nocturna 69±10 69±9 –0,4 [–1,2 a 0,3] Valor *La diferencia promedio y el IC del 95% obtenidos con pruebas de la t apareadas. Los valores son media ± desviación estándar. IC indica intervalo de confianza; PAD, presión arterial diastólica; y PAS, presión arterial sistólica. la presión arterial diurna y nocturna (Tabla S2). 45 –9]; P = 0,001; Figura 4). El análisis de subgrupos demostró que, además de los sujetos con diabetes mellitus, la toma de aspirina al acostarse redujo la reactividad plaquetaria en todos los subgrupos (Tabla S3). Efectos secundarios y preferencia del paciente Tres sujetos no completaron el estudio a causa de efectos secundarios (Tabla S4). La frecuencia de los efectos secundarios de la aspirina ya conocidos (dispepsia, náuseas, ardor de estómago) fue similar entre la toma de aspirina al despertarse y al acostarse (Tabla S5). Después de completar el estudio, 53/264 (20%) prefirieron cambiar el horario de la toma de aspirina en comparación con antes del ingreso al estudio. Un total de 32/264 (12%) pasaron de la toma al despertarse a la toma al acostarse, y 21/264 (8%) pasaron de la toma al acostarse a la toma al despertarse. En consecuencia, no se halló una preferencia clara por parte de los pacientes en cuanto al horario de la toma de aspirina. Discusión En este estudio cruzado a gran escala realizado en pacientes que usaban una dosis baja de aspirina para la prevención de ECV, la presión arterial de 24 horas no presentó diferencia con la toma de aspirina al acostarse y la toma de aspirina al despertarse. No obstante, la toma de aspirina al acostarse se relacionó con una menor reactividad plaquetaria por la mañana. Reactividad plaquetaria Hubo tres sujetos que olvidaron tomar aspirina el día anterior a la medición de reactividad plaquetaria (n = 3) y fueron excluidos del análisis. En el resto de los 133 sujetos, la toma de aspirina al acostarse redujo la reactividad plaquetaria por la mañana (diferencia promedio –22 ARU [intervalo de confianza del 95% –35 a Diferencia promedio: –22 ARU (p = 0,001) Al despertarse Al acostarse Hora de toma de la aspirina Figura 4. Efecto de la toma de una dosis baja aspirina al acostarse versus al despertarse en la reactividad plaquetaria por la mañana. La barra negra representa los valores de reactividad plaquetaria según VerifyNow después de la toma de aspirina al despertarse. La barra gris discontinua representa los valores después de la toma de aspirina al acostarse. Hypertension # 2-V2.indd 45 Comparación con estudios previos Numerosos estudios previos, en su mayoría provenientes de una única fuente en este campo, informaron un efecto reductor de la presión arterial con la toma de aspirina al acostarse.6-11,13,27 Posteriormente, nuestro grupo halló un mecanismo biológico admisible subyacente a este fenómeno: la toma de aspirina al acostarse, en comparación con la toma al despertarse, redujo la actividad de la renina plasmática y las excreciones de cortisol, dopamina y norepinefrina a lo largo de 24 horas.12 De esta manera, el hallazgo de que la toma de aspirina al acostarse en comparación con la toma al despertarse no reduce la presión arterial se opone a estos estudios anteriores. Esto puede explicarse por las diferencias en las poblaciones de estudio. En primer lugar, los estudios previos incluyeron sujetos que no usaban antihipertensivos, como β-bloqueantes o inhibidores del sistema renina-angiotensina-aldosterona. Se trata de una diferencia importante debido a que el mecanismo detrás del efecto de la aspirina dependiente del tiempo sobre la presión arterial estaba relacionado previamente con una reducción en el sistema renina-angiotensina-aldosterona y la actividad de las catecolaminas en el transcurso de 24 horas.12 No obstante, no se halló ningún efecto con el uso o no de β-bloqueantes o inhibidores del sistema renina-angiotensina-aldosterona. Incluso en el subgrupo que no usó ningún antihipertensivo, no se registró ningún efecto. Nuestros hallazgos corroboran aquellos de un estudio anterior que tampoco halló un efecto reductor de la presión arterial con la toma de aspirina al acostarse en los pacientes hipertensos tratados.28 En segundo lugar, los pacientes de todos los estudios previos no usaban aspirina antes de su ingreso al estudio. En contraposición, todos los pacientes de nuestro estudio tenían indicación médica de tomar aspirina y lo hicieron durante una mediana de 6 años. Es posible que el efecto de la aspirina dependiente del tiempo sobre la presión arterial se debilite con el transcurso del tiempo debido al aumento de rigidez arterial.29 27/05/2015 10:40:17 a.m. 46 Hypertension Junio 2015 No obstante, un posible efecto reductor de la presión arterial con la toma de aspirina al acostarse solo sería relevante en términos clínicos en pacientes que ya usaban aspirina para la prevención de ECV, y nosotros somos los primeros en este campo en incluir a este grupo de pacientes relevante desde el punto de vista clínico. Dada la ausencia de un efecto reductor de la presión arterial con la aspirina al acostarse en cualquiera de los subgrupos de nuestro estudio, en nuestra opinión, no se requieren estudios adicionales para evaluar el efecto reductor de la presión arterial con la aspirina al acostarse en pacientes que usan aspirina para la prevención de ECV. El ritmo circadiano de la reactividad plaquetaria y su relación con el pico matutino de eventos cardiovasculares se ha estudiado exhaustivamente.15,30 Los autores anteriores sugirieron que la inhibición plaquetaria durante las horas matutinas de alto riesgo podría optimizarse con la toma de aspirina al acostarse.20,21 Los estudios posteriores claramente demuestran que el efecto antiagregante plaquetario de la aspirina declina durante el intervalo de administración de 24 horas.18,19,31 En nuestro estudio, comparamos la función plaquetaria 12 horas después de la toma de aspirina (toma al acostarse) con una toma 24 horas después (toma al despertarse). De esta manera, podría haberse esperado una declinación en la actividad plaquetaria durante las horas de la mañana. Sin embargo, a nuestro leal entender, esto nunca se ha evaluado en un estudio clínico. Además, la reducción de la reactividad plaquetaria durante las horas matutinas de alto riesgo podría ser clínicamente relevante para los pacientes con ECV. Previamente estudiamos el efecto de la aspirina dependiente del tiempo sobre la reactividad plaquetaria por la mañana en sujetos sanos.32 Los resultados de este estudio confirman estos hallazgos en pacientes que usan aspirina a diario. Nuestro estudio sugiere que la reactividad plaquetaria por la mañana puede reducirse mediante la toma de aspirina al acostarse en lugar de la toma al despertarse. Este efecto estuvo presente homogéneamente en todos los subgrupos, excepto en el caso de los sujetos diabéticos. No obstante, el tamaño de este subgrupo fue demasiado reducido (n = 18) para descartar cualquier efecto en los pacientes diabéticos. Asimismo, los pacientes diabéticos tienen un recambio plaquetario mayor, y la administración de aspirina dos veces al día produce una inhibición plaquetaria más efectiva a lo largo de todo el día en dichos pacientes.33,34 La reducción de la reactividad plaquetaria durante las horas vulnerables de la mañana podría ser beneficiosa para los pacientes con ECV, quienes tienen mayor recambio plaquetario, y de los cuales, en el 25%, la reactividad plaquetaria es inhibida inadecuadamente 24 horas después de la toma de aspirina.31,35 tudios observacionales sugieren que una reducción de la reactividad plaquetaria podría derivar en un beneficio clínico para los pacientes con ECV. Debido a que el pico matutino de ECV es un proceso multifactorial, no esperamos que la toma de aspirina al acostarse pueda abolir completamente el pico matutino de ECV.38 Aun así, dada la alta prevalencia de ECV, una modesta reducción en el pico matutino daría como resultado un enorme beneficio absoluto. Por ejemplo, en los Estados Unidos se producen 280.000 eventos cardiovasculares recurrentes al año, con un riesgo excedente conocido del 40% en horas de la mañana.39 Si la toma de aspirina al acostarse redujera este pico matutino en un 20%, daría como resultado una reducción absoluta de 4.853 eventos recurrentes al año, únicamente en los Estados Unidos. Por lo tanto, el cambio a toma de aspirina al acostarse es una intervención simple y posiblemente efectiva. Futuros estudios deberían evaluar si esto, de hecho, se traduce en una reducción de eventos cardiovasculares. Interpretación clínica En el presente estudio, la aspirina al acostarse no redujo la presión arterial en pacientes con ECV que tomaban una dosis baja aspirina a diario. Por lo tanto, no recomendaríamos pasar a la toma de aspirina al acostarse para reducir la presión arterial en dichos pacientes. Aun así, la toma de aspirina al acostarse sí redujo la reactividad plaquetaria durante horas de la mañana. Se requieren futuros estudios para evaluar el efecto de esta simple intervención en el exceso de eventos cardiovasculares durante las horas de la mañana. Se ha demostrado que el riesgo de eventos cardiovasculares recurrentes se incrementa en pacientes con valores más elevados de reactividad plaquetaria, según VerifyNow-aspirin.36,37 Los pacientes con ECV estable y con reactividad plaquetaria > 550 ARU tuvieron un riesgo absoluto del 15,6% de desarrollar el criterio de valoración cardiovascular compuesto, mientras que en los pacientes con valores ARU < 550 dicho riesgo fue sólo del 5,3% .37 En otro estudio, el riesgo absoluto en función de criterio de valoración primario (muerte por todas las causas y eventos cardiovasculares recurrentes) fue del 13,3% en pacientes con > 454 ARU y del 5,9% en pacientes con < 454 ARU.36 Estos es- Hypertension # 2-V2.indd 46 Fortalezas y limitaciones La principal fortaleza de nuestro estudio es el diseño cruzado, que arroja una alta potencia estadística y permite la comparación de los efectos del tratamiento en cada paciente. Además, el presente estudio es el primero en este campo que registró el horario real de la toma de aspirina mediante pastilleros electrónicos, lo cual es de gran importancia para los efectos dependientes del tiempo del estudio. La principal limitación de nuestro estudio es que solo 150/263 (57%) pacientes cumplieron el protocolo del estudio a la perfección. Esto se debió principalmente a una MAPA inválida (n = 57) o un cumplimiento < 90% dentro del horario preespecificado para la toma de la aspirina (n = 42). No obstante, los análisis de sensibilidad entre los pacientes con seguimiento y cumplimiento completos revelaron los mismos resultados con intervalos de confianza estrechos (Tabla S2). Respecto de las mediciones de reactividad plaquetaria, el hecho de medir la reactividad plaquetaria solamente en un momento predeterminado durante la mañana constituye una limitación, a pesar de que la comparabilidad entre sujetos se optimizó al extraer sangre a la misma hora en cada visita. Una amplia proporción de los pacientes potencialmente elegibles no respondió o no quiso participar en el presente estudio. No obstante, los pacientes incluidos se asemejaron a una población general con ECV en lo que respecta a edad, sexo, antecedentes médicos y uso de medicación. Perspectivas Agradecimientos Agradecemos a todos los técnicos de laboratorio de Leiden Uni- 27/05/2015 10:40:17 a.m. Bonten et al versity Medical Center (LUMC) Einthoven Laboratory for Experimental Vascular Medicine por procesar el material biológico, y a todos los gerentes de datos del Departamento de Epidemiología Clínica del LUMC por su colaboración en la aleatorización de los sujetos del estudio. Agradecemos al Prof. T. Stijnen del Departamento de Estadística Médica del LUMC por su asesoramiento en estadística. También agradecemos a Margot de Waal y Henk de Jong del Departamento de Salud Pública y Atención Primaria del LUMC por su ayuda con respecto a la inclusión de participantes en el estudio. Expresamos nuestra gratitud a los médicos de cabecera y todos los pacientes que fueron parte de este estudio. Todos los autores asumen su responsabilidad por todos los aspectos referidos a la confiabilidad y la libertad de sesgos de los datos presentados y su interpretación analizada. Fuentes de financiamiento El presente trabajo fue financiado por Netherlands Heart Foundation (número de subsidio 2010B171). Ninguno. Conflictos de interés Referencias 1. Go AS, Mozaffarian D, Roger VL, et al; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2013 update: a report from the American Heart Association. Circulation. 2013; 127:e6-e245. doi: 10.1161/ CIR.0b013e31828124ad. 2. Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe: epidemiological update. Eur Heart J. 2013;34:3028- 3034. doi: 10.1093/eurheartj/eht356. 3. Turnbull F; Blood Pressure Lowering Treatment Trialists’ Collaboration. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003;362:1527-1535. 4. Egan BM, Zhao Y, Axon RN, Brzezinski WA, Ferdinand KC. Uncontrolled and apparent treatment resistant hypertension in the United States, 1988 to 2008. Circulation. 2011;124:1046-1058. doi: 10.1161/ CIRCULATI0NAHA.111.030189. 5. Johnson AG, Nguyen TV, Day RO. Do nonsteroidal anti-inflammatory drugs affect blood pressure? A meta-analysis. Ann Intern Med. 1994;121:289-300. 6. Hermida RC, Fernández JR, Ayala DE, Iglesias M, Halberg F. Time- dependent effects of ASA administration on blood pressure in healthy subjects. Chronobiologia. 1994;21:201-213. 7. Hermida RC, Ayala DE, Fernández JR, Mojón A, Alonso I, Silva I, Ucieda R, Codesido J, Iglesias M. Administration time-dependent effects of aspirin in women at differing risk for preeclampsia. Hypertension. 1999;34(4 Pt 2):1016-1023. 8. Hermida RC, Ayala DE, Calvo C, López JE, Fernández JR, Mojón A, Dominguez MJ, Covelo M. Administration time-dependent effects of aspirin on blood pressure in untreated hypertensive patients. Hypertension. 2003;41:1259-1267. doi: 10.1161/01.HYP.0000072335.73748.0D. 9. Hermida RC, Ayala DE, Iglesias M. Administration time-dependent influence of aspirin on blood pressure in pregnant women. Hypertension. 2003;41(3 Pt 2):651-656. doi: 10.1161/01.HYP.0000047876.63997.EE. 10. Hermida RC, Ayala DE, Calvo C, López JE. Aspirin administered at bedtime, but not on awakening, has an effect on ambulatory blood pressure in hypertensive patients. J Am Coll Cardiol. 2005;46:975-983. doi: 10.1016/j. jacc.2004.08.071. 11. Hermida RC, Ayala DE, Mojón A, Fernández JR. Ambulatory blood pressure control with bedtime aspirin administration in subjects with prehypertension. Am J Hypertens. 2009;22:896-903. doi: 10.1038/ajh.2009.83. 12. Snoep JD, Hovens MM, Pasha SM, Frolich M, Pijl H, Tamsma JT Huisman MV. Time-dependent effects of low-dose aspirin on plasma renin activity, aldosterone, cortisol, and catecholamines. Hypertension. 2009;54:1136-1142. doi: 10.1161/HYPERTENSIONAHA.109.134825. 13. Hermida RC, Ayala DE, Calvo C, López JE, Mojón A, Rodriguez M, Fernández JR. Differing administration time-dependent effects of aspirin on blood pressure in dipper and non-dipper hypertensives. Hypertension. Hypertension # 2-V2.indd 47 Presión arterial y toma de aspirina al acostarse 47 2005;46:1060-1068. doi: 10.1161/01.HYP.0000172623.36098.4e. 14. Cohen MD, Rohtla BS, Lavery BS, Muller MD, Mittleman MD. Metaanalysis of the morning excess of acute myocardial infarction and sudden cardiac death. Am J Cardiol. 1997;79:1512-1516. 15. Tofler GH, Brezinski D, Schafer AI, Czeisler CA, Rutherford JD, Willich SN, Gleason RE, Williams GH, Muller JE. Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med. 1987;316:1514-1518. doi: 10.1056/ NEJM198706113162405. 16. Di Minno G, Silver MJ, Murphy S. Monitoring the entry of new platelets into the circulation after ingestion of aspirin. Blood. 1983;61:1081-1085. 17. Patrono C, Ciabattoni G, Patrignani P, Pugliese F, Filabozzi P, Catella F, Davi G, Forni L. Clinical pharmacology of platelet cyclooxygenase inhibition. Circulation. 1985;72:1177-1184. 18. Grove EL, Hvas AM, Mortensen SB, Larsen SB, Kristensen SD. Effect of platelet turnover on whole blood platelet aggregation in patients with coronary artery disease. J Thromb Haemost. 2011;9:185-191. doi: 10.1111/j.1538-7836.2010.04115.x. 19. Würtz M, Hvas AM, Jensen LO, Kaltoft AK, Tilsted HH, Kristensen SD, Grove EL. 24-hour antiplatelet effect of aspirin in patients with previous definite stent thrombosis. Int J Cardiol. 2014;175:274-279. doi: 10.1016/j. ijcard.2014.05.013. 20. Cornélissen G, Halberg F, Prikryl P, Danková E, Siegelová J, Dusek J. Prophylactic aspirin treatment: the merits of timing. International Womb- toTomb Chronome Study Group. JAMA. 1991;266:3128-3129. 21. Kriszbacher I, Ajtay Z, Koppán M, Bódis J. Can the time of taking aspirin influence the frequency of cardiovascular events? Am J Cardiol. 2005;96:608610. doi: 10.1016/j.amjcard.2005.03.068. 22. Smith DH, Neutel JM, Lacourciere Y, Kempthorne-Rawson J. Prospective, randomized, open-label, blinded-endpoint (PROBE) designed trials yield the same results as double-blind, placebo-controlled trials with respect to ABPM measurements. JHypertens. 2003;21:1291-1298. doi: 10.1097/01. hjh.0000059068.43904.0a. 23. Coleman JL, Wang JC, Simon DI. Determination of individual response to aspirin therapy using the Accumetrics Ultegra RPFA-ASA System. Point of Care. 2004;3:77-82. 24. Madsen EH, Saw J, Kristensen SR, Schmidt EB, Pittendreigh C, MaurerSpurej E. Long-term aspirin and clopidogrel response evaluated by light transmission aggregometry, VerifyNow, and thrombelastography in patients undergoing percutaneous coronary intervention. Clin Chem. 2010;56:839847. doi: 10.1373/clinchem.2009.137471. 25. Octavio JA, Contreras J, Amair P, Octavio B, Fabiano D, Moleiro F, Omboni S, Groppelli A, Bilo G, Mancia G, Parati G. Time-weighted vs. conventional quantification of 24-h average systolic and diastolic ambulatory blood pressures. J Hypertens. 2010;28:459-464. doi: 10.1097/ HJH.0b013e328334f220. 26. Vaduganathan M, Alviar CL, Arikan ME, Tellez A, Guthikonda S, DeLao T, Granada JF, Kleiman NS, Ballantyne CM, Lev EI. Platelet reactivity and response to aspirin in subjects with the metabolic syndrome. Am Heart J. 2008;156:1002.e1-1002.e7. doi: 10.1016/j. ahj.2008.08.002. 27. Abdali K, Taghizadeh R, Amoei S, Tabatabai SHR. Comparison between aspirin and placebo on the mean of 24 hour blood pressure in pregnant women at preeclampsia risk, a double blind randomized controlled clinical trial. IJCBNM. 2013;1:83-91. 28. Dimitrov Y, Baguet JP, Hottelart C, Marboeuf P, Tartiere JM, Ducher M, Fauvel JP. Is there a BP benefit of changing the time of aspirin administration in treated hypertensive patients? Eur J Prev Cardiol. 2012;19:706- 711. doi: 10.1177/1741826711418165. 29. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25:932943. doi: 10.1161/01.ATV.0000160548.78317.29. 30. Scheer FA, Michelson AD, Frelinger AL III, Evoniuk H, Kelly EE, McCarthy M, Doamekpor LA, Barnard MR, Shea SA. The human endogenous circadian system causes greatest platelet activation during the biological morning independent of behaviors. PLoS One. 2011;6:e24549. doi: 10.1371/ journal.pone.0024549. 31. Henry P, Vermillet A, Boval B, Guyetand C, Petroni T, Dillinger JG, Sideris G, Sollier CB, Drouet L. 24-hour time-dependent aspirin efficacy in patients with stable coronary artery disease. Thromb Haemost. 2011;105:336-344. doi: 10.1160/TH10-02-0082. 32. Bonten TN, Saris A, van Oostrom MJ, Snoep JD, Rosendaal FR, Zwaginga J, Eikenboom J, van der Meer PF, van der Bom JG. Effect of aspirin intake at bedtime versus on awakening on circadian rhythm of platelet reactivity. A randomised cross-over trial. Thromb Haemost. 2014;112:1209-1218. doi: 10.1160/TH14-05-0453. 33. Christensen KH, Grove EL, Wurtz M, Kristensen SD, Hvas AM. Reduced antiplatelet effect of aspirin during 24 hours in patients with coronary artery 27/05/2015 10:40:17 a.m. 48 Hypertension Junio 2015 disease and type 2 diabetes. Platelets. In press. 34. Dillinger JG, Drissa A, Sideris G, Bal dit Sollier C, Voicu S, Manzo Silberman S, Logeart D, Drouet L, Henry P. Biological efficacy of twice daily aspirin in type 2 diabetic patients with coronary artery disease. Am Heart J. 2012;164:600-606.e1. doi: 10.1016/j.ahj.2012.06.008. 35. Perneby C, Wallén NH, Rooney C, Fitzgerald D, Hjemdahl P. Doseand time-dependent antiplatelet effects of aspirin. Thromb Haemost. 2006;95:652-658. 36. Breet NJ, van Werkum JW, Bouman HJ, Kelder JC, Ten Berg JM, Hackeng CM. High on-aspirin platelet reactivity as measured with aggregation-based, cyclooxygenase-1 inhibition sensitive platelet function tests is associated with the occurrence of atherothrombotic events. J Thromb Haemost. 2010;8:2140-2148. doi: 10.1111/j.1538-7836.2010.04017.x. 37. Chen WH, Cheng X, Lee PY, Ng W, Kwok JY, Tse HF, Lau CP. Aspirin resistance and adverse clinical events in patients with coronary artery disease. Am J Med. 2007;120:631-635. doi: 10.1016/j.amjmed.2006.10.021. 38. Muller JE, Tofler GH, Stone PH. Circadian variation and triggers of onset of acute cardiovascular disease. Circulation. 1989;79:733-743. 39. Elliott WJ. Cyclic and circadian variations in cardiovascular events. Am J Hypertens. 2001;14:291S-295S. Novedad y Significado ¿Qué es nuevo? • El efecto reductor en la presión arterial con la toma de aspirina al acostarse nunca se había estudiado en pacientes que usaban aspirina para la prevención de enfermedad cardiovascular. • Nunca se ha estudiado si la toma de aspirina al acostarse en comparación con la toma al despertarse reduce la reactividad plaquetaria por la mañana. ¿Qué es relevante? • La reactividad plaquetaria durante las horas de la mañana se redujo con la toma de aspirina al acostarse, lo cual podría ser beneficioso para los pacientes que toman aspirina a diario. Resumen A diferencia de estudios previos realizados en otros grupos de pacientes, la toma de aspirina al acostarse no redujo la presión arterial en pacientes que tomaban aspirina para prevenir enfermedades cardiovasculares. No obstante, la toma de aspirina al acostarse redujo la reactividad plaquetaria durante las horas matutinas de alto riesgo. • La toma de aspirina al acostarse en comparación con la toma al despertarse no redujo la presión arterial, lo cual se opone a los estudios previos realizados en pacientes sanos. Hypertension # 2-V2.indd 48 27/05/2015 10:40:17 a.m.
© Copyright 2026 Paperzz