505 PART 1." Solutions to Odd-Numbered Exercises and Practice T~sts Section 10.6 Polar Coordinates [] In polar coordinates you do not have unique representation of points. The point (r, 0) can be represented by (r, 0 -+ 2n~) or by (-r, 0 + (2n + 1)qr) where n is any integer. The pole is represented by (0, 0) where 0 is any angle. [] To convert from polar coo~.inates to rectapgular coordinates, use the following relationships. x = r cos 0 y = r sin 0 [] To convert from rectangular coordinates to polar coordinates, use the following relationships. r = +_ x,/~ y2 tan 0 = y/x If 0 is in the same quadrant as the point (x, y), then r is positive. If 0 is in the opposite quadrant as the point (x, y), then r is negative. [] You should be able to convert rectangular equations to polar form and vice versa. Solutions to Odd-Numbered Exercises 1. Polar coordinates: , ~ X~ 4COS =0 y = 4 sin =4 Rectaogular coordinates: (0, 4) 3. Polar coordinates: (- 1, ~) x = -1 cos -2 2 Rectangular coordinates: (~, ~) (0, 4) 2 Three additional representations (-- 4, -~), (4, -?), (- 4, -~) Three additional representations: PART I: Solutions to Odd-Numbered Exercises and Practice Tests 506 11. Three additional representations: Three additional representations: 7,n" ¢r I1~" 13. 15. x = -1 cos -3~r ~ y = -1 sin -3~r V’~ Rectangularcoordinates: 2 17. Polar coordinates: (0, -~) (origin!) x=0 cos(- 7_~) =0 x = 32 cos = 0, y = 32 sin Rectangular coordinates: (0, 32) ,--0,~n(-~)--0 Rectangular coordinates: (0, 0) = 32 507 PART l: Solutions to Odd-Numbered Exercises and Practice Tests 21. Polar coordinates: (~/~, 2.36) x = ~ cos(2.36) ~ - 1.004 y = ~/~ sin(2.36) ~ 0.996 2 Rectangular coordinates: (- 1.004, 0.996) 23. (r, 0)=(2,~"~) =:’ (x,y) =(-l.414,1.414)=(--J~,-f~) 25. (r,O)= (-4.5,1.3) ~ (x,y)= (S1.204,-4.336) 27. Rectangular coordinates: (-7, 0) r=7, tan 0= 0, 0=0 29. Rectangular coordinates: (1, 1) r=.~/~, tan0= 1, 0 Polar coordinates: (7, ~r), (-7,0) 31. Rectangular coordinates: (-3, 4) r= ,/~+ 16=5, tan0= -~, 0~ 2.214 Polar coordinates: (5, 2.214), (-5, 5.356) "rr 4 33. Rectangular coordinates: (r= ~/~+ 3 = ~f~, tan0= 1, 0 4 Polar coordinates: (./’~,~), (_./.~,~.rr) I23 508 PART I: Solutions to Odd-Numbered Exercises and Practice Tests 35. Rectangular coordinates: (4, 6) 37. (x,y) = (3,-2) ==~ r= 3 r = ~ = 2x/~, tan 0 = ~, 0 ~ 0.983 -0:588 0= (r, O) ~" (v/~, --0.588) Polar coordinates: (2x/~, 0.983), (-2x/~, 4.124) 39. (x, y) = (-4’~, 2) ==~ r = ~ + 22 -~ v/ff O= arctan(-~) = 0.857 4/3 O= aretan(5~) ~ 0.490 (r. 0) = (x/if, 0.857) 43. (x,y)= (0,-5) ::~ (r, 0)= (5,-1.57!) = (5, 45. (a) x2+y2=49 47. (a) x2+y~-2ax=O 49. (a) r~- 2acos O= 0 r=7 (b) x2 + y2 = a2 (a > O) x = 12 r cos 0 = 12 r(r - 2a cos O) = 0 r = 2acos 0 (b) xz + yz - 2ay = O r = 12 see 0 x=a (b) r co8 0 = a r2- 2asinO= 0 r(r - 2 a sin’O) -~ 0 r = 2asin 0 ~3. (a) y2 = x3 51. (a) xy=4 (r cos O)(r sin 0) = 4 r2 cos Osin 0 = 4 ta(2 cos O sin 0) = 8 r~ sin 20 = 8 r2 = 8csc20 2(r cos O)(r sin O) = 1 rz(2 cos 0 sin O) = 1 r~sin20 = 1 r~ = csc 20 (r sin 0)2 = (r cos 0)3 sin2 0 = rcos3 0 sin2 O r----------3tan20see0 cos 0 (b) x2 = y3 (r cos 0)2 = (r sin 0)3 cos2 0 = r sin~ 0 cos~ 0 ~ = 0cot~ Ocse a r = sin3 509 $$. PART 1: Solutions to Odd-Numbered Exercises and Practice Tests r = 4 sin 0 ta = 4r sin 0 x~ + yZ = 4y x~ + y~-4y=O 57. o= tan 0 - r=4 &= 16 2 x + y2 = 16 6’ 3 x3 ,/~x - 3y = 0 61. r = -3cscO ta = cos 0 r3 = r cos 0 63. r sin 0 = -3 (X2 + y2)3/2 = X y= -3 x2 + y2 = (x~ + y2)3 = x~ 65. 69. r = 2 sin30 r = 2(3 sin 0 - 4 sins O) r~=6tasinO- 8tasin~0 (~ +Y~)~ = 6(~z +YgY -- 8Y~ (x~ + y~)~ = 6x2y - 2y3 6 2- 3sinO r(2 - 3 sin O) = 6 2r = 6 + 3rsinO 2(±-~ = 6 + 3y 4(x~ + yZ) = (6 + 3y)z 4x~ + 4y~ = 36 + 36y + 9y~ 4xz -- 5yz -- 36y -- 36 -- 0 67. 71, r=3 ra = 9 xZ+y2=9 r= 3sec0 r cos 0 --- 3 tan 0 = tan ~Y x-y=O 77. True, the distances from the origin are the same. 1 1 - cos 0 r- rcos O= 1 4/~+y:z - X = 1 x2+y~= 1 +2x+x2 y~= 2x + 1 75. 73. r 6 3 2 x-3-0 510 PART 1: Solutions to Odd-Numbered Exercises and Practice Tests 79. (a) (r1, 01) = (xl, yl) where xI = r~ cos 01 and yl = r~ sin 0r (r~, 0z) = (x~, y~) where xz = r~ cos 0~ and y~ = r~ sin 02. Then xlz + yl2 = r~~ COS2 01 + r~~ sin~ 0~ = rl2 and x~~ + y:Z = r~. Thus, ~ = ~(x~ - x~)~ + ~ - y~)~ = ~x~~ - ~x~ + xz~ + y~: - 2y~y~ + y~ = 4(x~~ + Y~) + (x22 + Y22) - 2(x~x2 + = ~rx2 + r~~ - 2(r~r~ cos O~ cos O~ + r~r~ sin 01 sin 0:) = ~r~a + r~2 - 2r~r2 cos(O~ - 0:). (b) If O~ = 02, the points are on the same line through the origin. In this case, ~ = ~? + r? - a,,,~ ~o~(0) = ~ ~)~ = Ir, - ’~l(c) If O~ - O~ = 90~, d = ~ r~2, the Pythagorean Theorem. 81. D = _ Dx= _ = 5-21 = -16 83. D= =-11-21=-32 1 -3 0 -2 - =35 1 Dx= D =, 08 1-3 - =40 _53 -_113 =_15_33=_48 3 O~, -32 2 x= D = -IV= Dy_-48=3 Y= D --16 8 Oy = 0 0 88 ~ 3 -2 = 56 Dz= ~ -31 _D~, 40 8 X D 35 7 z=D_~.=56__= 8 D 35 5 85. (x + 5)8. ax3 = 175,000x3. a = 175,000 87. (2x - y)~2. axTy5 _-- -- 101,376xTy5. a = - 101,376
© Copyright 2025 Paperzz