PHASE EQUILIBRIA STUDIES WITH BROMINE A THESIS Presented to the Facility of the Graduate Division Henry Dodson Reese Page In Partial Fulfillment of the Requirements for the Degree Master of Science in Chemistry Georgia Institute of Technology September 19$2 ( PHASE EQUILIBRIA STUDIES WITH BROMINE Approved: Date Approved by Chairman iii ACKNOWLEDGMENTS I wish to express my appreciation to Dr. M. Spicer, upon •whose suggestion and under whose supervision this investigation has been conducted, I should l i k e to express my appreciation to the "Kinetic" Chemicals Division of DuPont for furnishing without charge one of the solvents used in t h i s investigation. Also, I wish to thank Mr. A, M. Whaley of Halogen Chemicals, Inc., upon whose advice two of the solvents were selected. iv TABLE OF CONTENTS Page APPROVAL SHEET ii ACKNOWLEDGMENTS iii LIST OF TABLES vi LIST OF FIGURES vii ABSTRACT viii Chapter I, II. INTRODUCTION 1 APPARATUS AND MATERIALS 3 A. Apparatus 3 1 . Equilibrium S t i l l 3 2. The Large Fractionating Column 6 3. The Small Fractionating Column 6 iu Apparatus for Measuring Volume Change on Mixing 7 B. Materials 1* Bromine •• • 2. Solvents III. PROCEDURE AND RESULTS A, 8 8 9 General Procedure for Operating the Equilibrium S t i l l B. • 8 General Method of Analysis 9 12 Chapter Page C. The System Bromine- Trichloromonofluorome thane D. The System Bromine- 1,1-dichloro2,2-difluoroethane E. DISCUSSION OF RESULTS. APPENDIX I . 16 The System Bromine- 1,2,2-trichloro1,1-di fluoroe thane IV. Ih TABLES AND FIGURES 1° 23 31 APPENDIX I I . SAMPLE CALCULATIONS h9 BIBLIOGRAPHY 53 vi LIST OF TABLES Table 1. Page Vapor-Liquid Equilibria Data for the System Br omine-Trichloromonofluoromethane 2. 31 Fractional D i s t i l l a t i o n of l,l-dichloro-2,2-difluoroe thane 3. 32 Vapor-Liquid Equilibria Data for the System Bromine- l,l-dichloro-2,2-difluoroethane U* 33 Fractional D i s t i l l a t i o n of 1,2,2-trichloro-l, 1-difluoroe thane • • • 5. 3U Vapor-Liquid Equilibria Data for the System Bromine- l,2,2-trichloro-l,l-difluoroethane 35 6. Data on Tests for Evidence of Reaction 36 7. Data on Volume Changes Observed on Mixing* 37 8. The Physical Properties of the Systems Investigated the Components of 38 vii LIST OF FIGURES Figure 1. Page Temperature-Composition Diagram for the System Br 2 - CCl^F at 760 mm Pressure 2. 3. 39 Vapor-Liquid Equilibrium Diagram for the System Br 2 - CCI3F at 760 mm Pressure kO Fractional D i s t i l l a t i o n of CHC^CHFg la Temperature-Composition Diagram for the System Br2 - CHCI2CHF2 at 760 mm Pressure $. hZ Vapor-Liquid Equilibrium Diagram for the System Br2 - CHCI2CHF2 at 76O mm Pressure h3 6. Fractional D i s t i l l a t i o n of CHC1 CF C1 hh 7« Temperature-Composition Diagram for the 2 2 System B r - CHC1 CF2C1 at 760 mm Pressure 2 8. V a p o r - L i q u i d E q u i l i b r i u m Diagram f o r System 9. 10. 2 Br2 - CHCI2CF2CI hS the at 760 mm Pressure k& Equilibrium S t i l l lfl Drying Train 1*8 viii ABSTRACT PHASE EQUILIBRIA STUDIES WITH BROMINE A study of the liquid-vapor equilibria of three binary systems, each consisting of bromine and an organic solvent was made. The ex perimentally obtained results were compared with predictions based on the properties of the components, and on the interaction between the components of each system as measured by volume change on mixing. This investigation i s a continuation of work by Spicer and Kruger, and by Spicer and Meyer. The work was initiated to discover binary azeotropes consisting of one colored and one colorless component. Azeotropes of t h i s type are valuable i n the study of methods for separating azeotropic mixtures, for the extent of separation can be ascertained merely by visual observation. The e q u i l i b r i u m s t i l l used i n t h i s investigation was modified from a similar s t i l l described by Jones, Schoenborn, and Colbura. A scale drawing of the modified s t i l l i s presented. A l l equilibria were studied at 760 mm pressure. The System Bromine-Trichloromonofluoromethane.—In this system, the boiling point increases regularly as the mole fraction of bromine i n the liquid i s increased. No azeotrope i s formed. The System Bromine- 1 , l-dichloro-2^ 2-difluoroethane«—In t h i s system an azeotrope i s formed with a composition of 0.581 mole fraction ix b r o m i n e , a n d a b o i l i n g p o i n t o f U°.6° C . The p e r c e n t i n c r e a s e in v o l u m e o n m i x i n g b r o m i n e w i t h t h e s o l v e n t o f t h i s s y s t e m was f o u n d t o be a b o u t 1.8, and n o t i c e a b l e c o o l i n g o c c u r r e d . the deviation from Raoult's law i s greater This i n d i c a t e s that i n t h i s system than i n t h e system f o l l o w i n g , b u t t h i s c o n c l u s i o n i s i n c o n s i s t e n t w i t h the e s t i m mated i n t e r n a l p r e s s u r e s . T h i s i n c o n s i s t e n c y c a n be e x p l a i n e d b y t h e p r o b a b i l i t y o f g r e a t e r hydrogen bonding between t h e molecules o f t h i s solvent, t h a n between t h e molecules o f t h e s o l v e n t o f t h e system following. The S y s t e m B r o m i n e - 1 , 2 , 2 - t r i c h l o r o - l , 1 - d i f l u o r o e t h a n e # — I n t h i s an a z e o t r o p e i s f o r m e d w i t h a c o m p o s i t i o n o f 0.7U7 m o l e b r o m i n e , a n d a b o i l i n g p o i n t o f 3>U«6° C . system fraction The p e r c e n t i n c r e a s e in v o l u m e o n m i x i n g b r o m i n e w i t h t h e s o l v e n t o f t h i s s y s t e m was f o u n d t o be a b o u t 0 . 3 . S l i g h t , but noticeable Measurements c o o l i n g occurred on m i x i n g . of the r e f r a c t i v e indices o f the solvents of the second and t h i r d systems b e f o r e and a f t e r contact w i t h bromine, p o r t t h e c o n t e n t i o n t h a t no r e a c t i o n t a k e s p l a c e between t h e s e v e n t s and b r o m i n e . The s m o o t h n e s s o f t h e e q u i l i b r i u m c u r v e s sup sol is f u r t h e r evidence t h a t no r e a c t i o n t a k e s p l a c e between t h e s o l v e n t and bromine i n any o f t h e systems investigated. Comparison o f t h e system b r o m i n e - t r i c h l o r o m o n o f l u o r o m e t h a n e and the system bromine- 1 , 2 , 2 - t r i c h l o r o - l , 1-difluoroethane with the system b r o m i n e - b e n z o t r i f l u o r i d e , i n d i c a t e s t h a t b e n z o t r i f l u o r i d e must be a s s o c i a t e d t o a g r e a t e r extent than are trichloromonofluoromethane or 1 , 2 , 2 - t r i c h l o r o - l , 1 - d i f l u o r o e t h a n e * CHAPTER I INTRODUCTION 1 PHASE E Q U I L I B R I A STUDIES WITH BROMINE CHAPTER I INTRODUCTION I n t h e development tures, o f methods f o r s e p a r a t i n g a z e o t r o p i c i t i s c o n v e n i e n t t o work w i t h c o n s t a n t b o i l i n g m i x t u r e s i n g one c o l o r e d c o m p o n e n t , c o l o r , b r o m i n e was s u g g e s t e d as a s u i t a b l e 1 Mayer*" f o u n d a z e o t r o p e s ponent. Spicer, Because o f i t s i n t e n s e component f o r such m i x t u r e s . i n v e s t i g a t e d t h e system b r o m i n e - c a r b o n and p r o v e d t h e e x i s t e n c e contain f o r s e p a r a t i o n o f t h e c o l o r e d component c a n be d e t e r m i n e d b y d i r e c t v i s u a l o b s e r v a t i o n . Spicer and K r u g e r mix o f an azeotrope i n t h i s system. tetrachloride Spicer and i n o t h e r systems i n w h i c h b r o m i n e was a com T h i s i n v e s t i g a t i o n i s a c o n t i n u a t i o n o f t h e work done b y Kruger and Meyer. Because o f t h e h i g h r e a c t i v i t y o f b r o m i n e , a n d t h e f a c t azeotrope f o r m a t i o n i s n o t l i k e l y t o o c c u r when t h e d i f f e r e n c e that between b o i l i n g p o i n t s o f t h e components i s l a r g e , ^ t h e c h o i c e o f i n e r t b r o m i n e s o l v e n t s was d i f f i c u l t . M. S p i c e r I t was a l s o d e s i r e d t h a t s u c h s o l v e n t s a n d J . K r u g e r , J . Am. Chem. S o c . , 72, 1855 (1950) hi. M. S p i c e r a n d L . H . M e y e r , J . A m . Chem. S o c . , %. H . E w e l l , J . M. H a r r i s o n , a n d L . B e r g , I n d . E n g . 36, 871 (19UM 73, 93k (1951) Chem., 2 s h o u l d be c o m p l e t e l y m i s c i b l e w i t h b r o m i n e . completely haolgenated, The saturated hydrocarbons. s e a r c h was b e g u n w i t h Only t r i c h l o r o m o n o - f l u o r o m e t h a n e met t h e above r e q u i r e m e n t s , had n o t been p r e v i o u s l y i n v e s t i g a t e d , and was a l s o a v a i l a b l e o f t h i s compound made a z e o t r o p e centrations, very unlikely. a b l e , however, in quantity. f o r m a t i o n , except a t low bromine Because t h i s i t was u s e d f o r a n i n i t i a l In general, The l o w b o i l i n g p o i n t compound was r e a d i l y con avail study. compounds c o n t a i n i n g a h a l o g e n a t o m o n e a c h c a r b o n atom w i l l n o t r e a d i l y undergo s u b s t i t u t i o n r e a c t i o n s w i t h b r o m i n e . has been observed a l s o , t h a t attached t o the compounds i n w h i c h t w o f l u o r i n e a t o m s same c a r b o n , a r e c o n s i d e r a b l y i n c r e a s e d i n I n v i e w o f t h i s , i t was d e c i d e d t h a t p a r t i a l l y h a l o g e n a t e d c o n t a i n i n g the CF absence 2 compounds the V a p o r - l i q u i d s t u d i e s w e r e t h e r e f o r e made o n systems c o n s i s t i n g o f bromine and l , l - d i c h l o r o - 2 , 2 - d i f l u o r o e t h a n e , o f bromine and l,2,2-trichloro-l,l-difluoroethane. A d e t a i l e d r e p o r t on t h e i n v e s t i g a t i o n o f t h e e q u i l i b r i a of these vapor-liquid t h r e e systems f o l l o w s i n the e n s u i n g ^ A . L . Henne a n d Thomas M i d g l e y , Jr., J . Am. Chem. 58, 882 (1936). ^J. are stability.^ g r o u p w o u l d p r o b a b l y be i n e r t t o b r o m i n e i n of a catalyst. It H. Simons, I n d . Eng. Chem., 39, 2U0 (19U7). chapters. Soc., and CHAPTER II APPARATUS AND MATERIALS 3 CHAPTER II APPARATUS AND MATERIALS Apparatus Equilibrium Still A l l l i q u i d - v a p o r e q u i l i b r i a d a t a was o b t a i n e d f r o m an e q u i l i brium s t i l l , a s c a l e d r a w i n g o f w h i c h i s shown i n F i g u r e 9* Originally t h i s s t i l l was made a c c o r d i n g t o t h e s p e c i f i c a t i o n s o f a s i m i l a r whose d e s i g n a n d o p e r a t i o n i s d e s c r i b e d b y J o n e s , S c h o e n b o r n , Colburn.^ Meyer. still and A d d i t i o n s a n d m o d i f i c a t i o n s w e r e made b y K r u g e r a n d b y The s t i l l was r e b u i l t f o r t h i s i n v e s t i g a t i o n , a n d s l i g h t m o d i f i c a t i o n s were further made* As c a n be seen f r o m F i g u r e structed entirely of glass. 9> t h e e q u i l i b r i u m s t i l l i s The f l a s h b o i l e r , residue con chamber, and vapor l i n e each has a s e p a r a t e c o i l o f nichrome w i r e , connected through a G e n e r a l R a d i o Company V a r i a c t o a Sola constant voltage transformer. The a d j u s t m e n t o f t h e v o l t a g e a p p l i e d t o t h e r e s i d u e chamber c o i l m u s t be c a r e f u l l y c o n t r o l l e d , a n d i s d e p e n d e n t on t h e v o l t a g e a p p l i e d the f l a s h b o i l e r . t h e f i r s t s y s t e m had For t h i s reason, a f t e r been s t u d i e d , a v o l t m e t e r h a v i n g a z e r o t o t e n v o l t s s c a l e was p l a c e d p a r a l l e l w i t h t h e r e s i d u e chamber c o i l . B o t h t h e r e s i d u e chamber ^ C . A . J o n e s , E . M. S c h o e n b o r n , a n d A . P. C h e m . , 35, 666 (19U3) Colburn, Ind. to in and Eng. f l a s h b o i l e r c o i l V a r i a c s w e r e c o n n e c t e d t h r o u g h one S u p e r i o r Electric Co. Powerstat t o the Sola c o n s t a n t v o l t a g e t r a n s f o r m e r . this arrangement, With l a r g e f l u c t u a t i o n s i n l i n e v o l t a g e , n o t smoothed o u t b y t h e c o n s t a n t v o l t a g e t r a n s f o r m e r , c o u l d be q u i c k l y c o m p e n s a t e d f o r by a d j u s t i n g the Powerstat u n t i l the voltmeter returned t o a reading p r e v i o u s l y determined as being c o r r e c t . The r e s i d u e chamber a n d v a p o r l i n e w e r e c o v e r e d w i t h i n s u l a t i o n formed f r o m a s b e s t o s p a s t e , e x c e p t f o r a s m a l l window on t h e residue chamber, p r o v i d e d so t h a t t h e l i q u i d l e v e l c o u l d be o b s e r v e d . A l a r g e g l a s s t a n k , n o t shown i n F i g u r e 9, crushed i c e . was k e p t f u l l of C o l d w a t e r f r o m t h e m e l t i n g i c e was pumped t h r o u g h t h e t w o c o n d e n s e r s , a l l o w e d t o t r i c k l e o v e r t h e c r u s h e d i c e , and r e c i r c u lated. I n studying the f i r s t s y s t e m , i t was n e c e s s a r y t o p l a c e c o o l i n g c o i l of glass around the lower p o r t i o n of the residue a n d t o pump i c e w a t e r t h r o u g h t h i s a l s o . p o i n t o f ihe chamber, T h i s was b e c a u s e t h e b o i l i n g s o l v e n t , t r i c h l o r o m o n o f l u o r o m e t h a n e , was s o m e t i m e s room t e m p e r a t u r e . a Without the cooling c o i l , below vapor bubbled t h r o u g h the r e s i d u e chamber t o o f a s t t o r e a c h e q u i l i b r i u m w i t h t h e l i q u i d p h a s e t h e r e , a n d c a u s e d s u c h a n o v e r l o a d on t h e f l a s h b o i l e r t h a t entrainment resulted. As t h e w e a t h e r became warm a n d h u m i d , w a t e r c o n d e n s i n g f r o m t h e air on t h e c o l d o u t e r s u r f a c e s o f t h e condensers p r e s e n t e d a p r o b l e m . T h i s w a t e r d r i p p i n g on t h e f l a s h b o i l e r c o m p l e t e l y u p s e t o p e r a t i o n t h e i n s t r u m e n t , a n d i n d r i p p i n g down t h e d i s t i l l a t e chamber t u b e , threatened to contaminate samples. of delivery D e v i c e s w e r e made o f paper 5 i n s u l a t e d w i r e , and o f g l a s s w o o l , t h a t e f f e c t i v e l y c o n t r o l l e d t h i s water so t h a t i t d r i p p e d h a r m l e s s l y o n t o s p o n g e s p r o v i d e d f o r purpose. T h e s e d e v i c e s a r e n o t shown i n F i g u r e this 9* To m i n i m i z e t h e l o s s o f b r o m i n e v a p o r i n t o t h e a t m o s p h e r e , two d e l i v e r y joints, tubes were equipped w i t h s t a n d a r d t a p e r ground g l a s s Erlenmeyer ground glass j o i n t s , librium the f l a s k s were equipped w i t h c o r r e s p o n d i n g female and were used t o i n t r o d u c e l i q u i d i n t o the equi still. A cold trap, bottle f u l l shown i n F i g u r e of dry ice 9* was s u r r o u n d e d b y a throughout a l l runs. thermos This t r a p prevented mois t u r e from e n t e r i n g the system, and a l s o prevented t h e h i g h l y c o r r o s i v e bromine vapor f r o m e n t e r i n g the pressure tank. As i n d i c a t e d i n F i g u r e 99 a t w o - w a y s t o p - c o c k o p e n e d t h e librium s t i l l to a water l e a k - p r o o f metal aspirator, or to a pressure tank. t a n k was e q u i p p e d w i t h a 1/6 This The t a n k a n d c o m p r e s s o r w e r e u s e d t o m a i n t a i n pressure i n the e q u i l i b r i u m s t i l l at 760 mm. large HP c o m p r e s s o r , a n d was connected t o the g l a s s tube l e a d i n g f r o m the e q u i l i b r i u m s t i l l rubber tubing. equi A mercury by heavy the manometer, c o n n e c t e d t o t h e g l a s s t u b e l e a d i n g t o t h e p r e s s u r e t a n k , was u s e d f o r r e a d i n g gage p r e s s u r e * A copper-constantan thermocouple, i n s e r t e d i n t o a w e l l i n t h e r e s i d u e chamber, tures. thermocouple was u s e d t o m e a s u r e e q u i l i b r i u m tempera The c o l d j u n c t i o n was i n a b a t h o f f i n e l y c r u s h e d m e l t i n g h e l d i n a dewar f l a s k s u r r o u n d e d by a s b e s t o s i n s u l a t i o n . c o u p l e was c o n n e c t e d t o a L e e d s a n d N o r t h r u p N o . r e a d i n g t o 0.001 millivolt. 7651 The ice, thermo potentiometer T h i s number o f m i l l i v o l t s c o r r e s p o n d s to 6 about-0.01 degrees c e n t i g r a d e . Variations i n the potentiometer c i r c u i t and f l u c t u a t i o n s i n t h e o p e r a t i o n o f t h e s t i l l , l i b r i u m t e m p e r a t u r e s a c c u r a t e t o o n l y a b o u t 0.1° made t h e r e c o r d e d e q u i C I n r e b u i l d i n g the a p p a r a t u s f o r t h i s i n v e s t i g a t i o n , i t was n e c e s s a r y t o make a new copper-constantan thermocouple. a c o r r e c t e d 100° x 0.1° The t h e r m o c o u p l e was c a l i b r a t e d C, 76 mm i m m e r s i o n against thermometer. A device f o r removing a l l traces of water from the e q u i l i b r i u m still i s i n d i c a t e d i n F i g u r e 10. B|y means o f t h e w a t e r a s p i r a t o r , air was b u b b l e d t h r o u g h c o n c e n t r a t e d s u l f u r i c a c i d , was p a s s e d o v e r soda- l i m e , and t h e n i n t o t h e e q u i l i b r i u m s t i l l . still When n e c e s s a r y , the was a l s o warmed b y means o f t h e t h r e e h e a t i n g c o i l s a l r e a d y d i s c u s s e d . The L a r g e F r a c t i o n a t i n g C o l u m n A f i v e f o o t g l a s s h e l i x p a c k e d c o l u m n was u s e d t o p u r i f y l,l-dichloro-2,2-difluoroethane and l,2,2-trichloro-l,l-difluoroethane. T h i s c o l u m n was a l s o u s e d t o s e p a r a t e p u r e s o l v e n t f r o m a m i x t u r e of b r o m i n e and s o l v e n t , i n t e s t i n g f o r t h e p o s s i b i l i t y o f r e a c t i o n . The c o l u m n was e q u i p p e d w i t h a h e a t i n g c o i l o f n i c h r o m e w i r e , c o n n e c t e d t h r o u g h a G e n e r a l R a d i o Company V a r i a c voltage transformer. The d i s t i l l i n g t o a Sola constant f l a s k was h e a t e d b y means o f G l a s - C o l h e a t i n g m a n t l e , c o n n e c t e d i n t h e same w a y . a A n a i r gap i n s u l a t e d the column f r o m the s u r r o u n d i n g atmosphere. D u r i n g a l l r u n s , a r e f l u x r a t i o o f more t h a n 20-1 a n d i c e w a t e r was c i r c u l a t e d t h r o u g h t h e was m a i n t a i n e d , condenser. The S m a l l F r a c t i o n a t i n g C o l u m n T h i s c o l u m n h a s a p a c k e d s e c t i o n a b o u t hp c e n t i m e t e r s l o n g a n d 7 2 centimeters i n diameter, and i s packed w i t h 3 / l 6 The c o l u m n i s i n s u l a t e d w i t h g l a s s w o o l . inch glass helices. H e a t was a p p l i e d b y a Glas-Col heating mantle which surrounded the d i s t i l l i n g f l a s k . column i s equipped w i t h s t a n d a r d t a p e r ground g l a s s j o i n t s f o r ing flask, thermometer, and t a k e - o f f . The distill A glass tube l e d from the c o n d e n s e r t o a c o l d t r a p w h i c h was s u r r o u n d e d b y d r y i c e d u r i n g a l l r u n s . During o p e r a t i o n , a rubber tube l e d from the c o l d t r a p mentioned above, t o t h e d i s t i l l a t e chamber d e l i v e r y t u b e o f t h e e q u i l i b r i u m s t i l l . In t h i s manner t h e p r e s s u r e c o n t r o l a p p a r a t u s d e s c r i b e d a b o v e , c o u l d be u s e d t o m a i n t a i n a p r e s s u r e o f 760 mm o n t h e c o l u m n . plained later, t h i s c o l u m n was u s e d t o p r e p a r e A s w i l l be ex azeotropes. A p p a r a t u s f o r M e a s u r i n g Volume Change o n M i x i n g The a p p a r a t u s f o r m e a s u r i n g v o l u m e c h a n g e on m i x i n g c o n s i s t e d s i m p l y o f two t e n m i l l i l i t e r b u r e t s , and a small graduated cylinder. The g r a d u a t e d c y l i n d e r was made b y s e a l i n g a n d r o u n d i n g t h e t i p o f a ten m i l l i l i t e r pipet. The p l p e t was c u t a t t h e f o u r m i l l i l i t e r m a r k , a n d a r i n g o f g l a s s b e a d s was a t t a c h e d j u s t b e l o w t h i s m a r k s o that t h e c y l i n d e r c o u l d be h u n g . The c y l i n d e r w a s c a l i b r a t e d f o r r e a d i n g t h e t o p m e n i s c u s , by m e a s u r i n g a number o f s a m p l e s o f p o t a s s i u m p e r m a n g a n a t e s o l u t i o n i n w a t e r , i n t o t h e c l e a n d r y c y l i n d e r f r o m each o f t h e b u r e t s . 8 Materials Bromine ! B a k e r s a n a l y z e d C. P. b r o m i n e was u s e d f o r a l l s y s t e m s . No f u r t h e r p u r i f i c a t i o n was p e r f o r m e d . Solvents T r i c h l o r o m o n o f l u o r o m e t h a n e . — T h i s s o l v e n t , "Freon 11, by the " K i n e t i c " Chemicals D i v i s i o n o f E. I. n was c o n t r i b u t e d d u P o n t de Nemours & C o . . E x c e p t f o r s t r a i g h t d i s t i l l a t i o n i n a l l g l a s s a p p a r a t u s , no f u r t h e r p u r i f i c a t i o n was p e r f o r m e d . l,l-dichloro-2,2-difluoroethane.—This compound was p u r c h a s e d f r o m Halogen Chemicals I n c . , a n d was s t a t e d b y i t s m a n u f a c t u r e r t o be t h a n 95 p e r c e n t p u r e . F u r t h e r p u r i f i c a t i o n was p e r f o r m e d b y f r a c t i o n a l d i s t i l l a t i o n i n the l a r g e r column d e s c r i b e d above. t h i s d i s t i l l a t i o n w i l l be f o u n d i n T a b l e 2, An a c c o u n t a n d i n F i g u r e 3. c u t c o n s i s t i n g o f f r a c t i o n s f o u r t h r o u g h e i g h t was b e t t e r t h a n 95 p e r c e n t p u r e . of A middle used. 1 , 2 , 2 - t r i c h l o r o - l , 1 - d i f l u o r o e t h a n e . — T h i s compound was a l s o from Halogen Chemicals I n c . , better purchased and was s t a t e d b y i t m a n u f a c t u r e r t o be F u r t h e r p u r i f i c a t i o n was p e r f o r m e d b y f r a c t i o n a l d i s t i l l a t i o n i n the l a r g e r column. t i o n w i l l be f o u n d i n T a b l e U, a n d i n F i g u r e 6. i n g o f f r a c t i o n s f o u r t h r o u g h n i n e was u s e d . Data on t h i s d i s t i l l a A middle cut c o n s i s t CHAPTER III PROCEDURE AMD RESULTS 9 CHAPTER III PROCEDURE AND RESULTS General Procedure f o r Operating the E q u i l i b r i u m S t i l l B e f o r e s t u d y i n g e a c h s y s t e m t h e e q u i l i b r i u m s t i l l was cleaned, rinsed several times w i t h d i s t i l l e d water, thoroughly rinsed with t h e n d r i e d b y d r a w i n g a i r f r o m t h e d r y i n g t r a i n o f F i g u r e 10 the apparatus over through night. P u r e s o l v e n t was t h e n i n t r o d u c e d i n t o t h e a p p a r a t u s . water heater c i r c u l a t i n g through the condensers, o n , an E r l e n m e y e r With and o n l y t h e f l a s h f l a s k f i t t e d w i t h a standard taper g r o u n d g l a s s j o i n t and c o n t a i n i n g a t l e a s t tube. ice boiler female 2£ m l o f s o l v e n t , was l y a t t a c h e d t o t h e d i s t i l l a t e chamber d e l i v e r y stopcocks were acetone, loose The d e l i v e r y c l o s e d a n d t h e a s p i r a t o r was a d j u s t e d so t h a t tube the p r e s s u r e w i t h i n t h e a p p a r a t u s was o n l y s l i g h t l y l e s s t h a n t h a t o f the atmosphere. that The d i s t i l l a t e chamber s t o p c o c k was s l o w l y o p e n e d so l i q u i d was d r a w n i n t o t h e d i s t i l l a t e c h a m b e r , t h e f l a s h b o i l e r i n t o t h e r e s i d u e chamber. almost t o the bottom o f the Erlenmeyer through The d e l i v e r y t u b e flask, o f t h e c o n t e n t s c o u l d be i n t r o d u c e d i n t o t h e and o v e r f l o w e d reached so t h a t v e r y n e a r l y all apparatus. The t w o - w a y s t o p c o c k was t h e n o p e n e d t o t h e p r e s s u r e t a n k w h i c h had been opened t o t h e atmosphere. B a r o m e t r i c p r e s s u r e was determined, a n d e n o u g h g a g e p r e s s u r e was a p p l i e d t o t h e t a n k t o c o r r e c t t h e s u r e w i t h i n t h e e q u i l i b r i u m s t i l l t o 760 mm. pres B o t h b a r o m e t r i c a n d gage 10 pressures were checked s e v e r a l s u r e o f t h e t a n k changed i f t i m e s d u r i n g e a c h r u n , a n d t h e gage p r e s necessary. Once t h e s t i l l h a d b e e n f i l l e d , and t h e p r e s s u r e a d j u s t e d , i t was n e c e s s a r y t o r e g u l a t e t h e h e a t s u p p l i e d t o t h e f l a s h b o i l e r , residue chamber, vapor and v a p o r l i n e * The r e g u l a t i o n o f h e a t s u p p l i e d t o t h e l i n e was n o t s e n s i t i v e , f o r i t w a s o n l y r e q u i r e d t h a t t h e o f t h e v a p o r l i n e be g r e a t e r temperature t h a n t h a t o f t h e r e s i d u e chamber. This p r e c a u t i o n p r e v e n t e d vapor f r o m condensing back i n t o the l i q u i d phase, and p r e v e n t e d r e f l u x i n g and t h e r e f o r e f r a c t i o n a t i o n . The flash boiler t e m p e r a t u r e w a s a d j u s t e d so t h a t a s t e a d y s t r e a m o f v a p o r b u b b l e d a r o u n d the thermocouple w e l l . great, I f t h i s s t r e a m o f b u b b l e s was n o t s u f f i c i e n t l y t h e l i q u i d i n t h e r e s i d u e chamber was n o t m a i n t a i n e d a t equilib r i u m t e m p e r a t u r e , a n d t h e t e m p e r a t u r e r e a d was v e r y s e n s i t i v e t o s l i g h t c h a n g e s i n t h e a d j u s t m e n t o f t h e r e s i d u e chamber h e a t i n g On t h e o t h e r h a n d , i f t o o much h e a t was s u p p l i e d t o t h e f l a s h very coil. boiler, v a p o r b u b b l e d t h r o u g h t h e r e s i d u e chamber t o o r a p i d l y t o a t t a i n e q u i l i b rium. The m o s t s e n s i t i v e a d j u s t m e n t was t h a t o f t h e h e a t s u p p l i e d t o t h e r e s i d u e chamber. If i n s u f f i c i e n t h e a t was s u p p l i e d , v a p o r t h e f l a s h b o i l e r w o u l d c o n d e n s e i n t h e r e s i d u e chamber a n d would cease. If leaving operation t o o much h e a t was s u p p l i e d , t h e f l a s h b o i l e r w o u l d be o v e r l o a d e d and l i q u i d c o l l e c t i n g t h e r e w o u l d be e n t r a i n e d w i t h v a p o r i n t o t h e r e s i d u e chamber. T h i s a d j u s t m e n t was d e p e n d e n t o n t h e heat s u p p l i e d t o t h e H a s h b o i l e r , f o r a r a p i d stream o f vapor passing through t h e r e s i d u e chamber b r o u g h t i n more h e a t e n e r g y t h a n d i d a s l o w s t r e a m . To a l e s s e r , but noticeable extent, t h i s a d j u s t m e n t was a l s o dependent 11 on t h e r a t e o f c i r c u l a t i o n o f condenser c o o l i n g w a t e r . The h e a t t o t h e r e s i d u e chamber was s o a d j u s t e d t h a t l i q u i d was a t a l l supplied times m a i n t a i n e d a t t h e b o t t o m o f t h e f l a s h b o i l e r , so t h a t s u p e r h e a t i n g the flash b o i l e r could not occur. this liquid at T h i s h e a t was a l s o s o a d j u s t e d in that the b o t t o m o f t h e f l a s h b o i l e r d i d n o t i n c r e a s e i n volume enough t o be e n t r a i n e d i n t o the r e s i d u e chamber. t i o n s had been f u l f i l l e d , When a l l t h e s e c o n d i i t was f e l t t h a t t h e t e m p e r a t u r e r e a d was true e q u i l i b r i u m temperature. I t was o b s e r v e d e x p e r i m e n t a l l y , l i q u i d d i d not q u i t e reach the bottom o f the f l a s h b o i l e r the the that if temperature r e a d i n g was l o w , a n d t h a t i f a p o o l o f l i q u i d c o l l e c t e d a t t h e b o t t o m o f t h e f l a s h b o i l e r t h e t e m p e r a t u r e r e a d i n g was h i g h . When t h e s e c o n d i t i o n s h a d b e e n m a i n t a i n e d s u f f i c i e n t l y l o n g f o r e q u i l i b r i u m t o b e r e a c h e d , t h e t e m p e r a t u r e was d e t e r m i n e d b y means the thermocouple and p o t e n t i o m e t e r a l r e a d y d e s c r i b e d . were of Several readings t a k e n o v e r a p e r i o d o f a t l e a s t h a l f a n h o u r t o be s u r e t h a t equi l i b r i u m had been r e a c h e d . After thus o b t a i n i n g t h e b o i l i n g p o i n t o f pure s o l v e n t , r u n s were made w i t h s o l u t i o n s o f t h e s o l v e n t a n d b r o m i n e r a n g i n g f r o m 0 p e r t o 100 p e r c e n t b r o m i n e . Between e a c h o f t h e s e r u n s , t h e e q u i l i b r i u m s t i l l was d r i e d b y p a s s i n g a i r the s t i l l over n i g h t . cent f r o m t h e d r y i n g t r a i n o f F i g u r e 10 The p r o c e d u r e o f i n t r o d u c i n g s o l u t i o n s a n d through deter m i n i n g t h e i r e q u i l i b r i u m t e m p e r a t u r e s was i d e n t i c a l t o t h a t g i v e n a b o v e f o r pure s o l v e n t . S i n c e v a p o r and l i q u i d phases d i f f e r e d g r e a t l y in c o m p o s i t i o n f o r e a c h o f t h e s e s o l u t i o n s , h o w e v e r , a b o u t a n h o u r was a l l o w e d f o r e q u i l i b r i u m t o be r e a c h e d . The p r o c e d u r e f o l l o w e d i n i n g t h e l i q u i d a n d v a p o r p h a s e s o f t h e s e s o l u t i o n s w i l l be analyz presented 12 below. G e n e r a l Method o f A n a l y s i s Because o f t h e v o l a t i l i t y o f t h e l i q u i d s , ground-glass stoppered weighing b o t t l e s . o f a p p r o x i m a t e l y 50 t h e y were weighed in A number o f w e i g h i n g b o t t l e s m l c a p a c i t y a n d a b o u t h$ grams i n w e i g h t w e r e u s e d . The t w o b o t t l e s h a v i n g t h e l e a s t w e i g h t w e r e m a r k e d a n d e a c h was u s e d a s a counterpoise. I n p r e p a r a t i o n f o r e a c h r u n , 20 m l o f a s o l u t i o n o f p o t a s s i u m i o d i d e , s o made u p t h a t e a c h 20 ml contained 3.072 grams p o t a s s i u m i o d i d e , was p o u r e d i n t o e a c h o f e i g h t o f t h e s e b o t t l e s . of The b o t t l e s w e r e p l a c e d i n a s h a l l o w , h a r d r u b b e r p a n , a n d c r u s h e d i c e was p a c k e d a r o u n d t h e m s o t h a t t h e i c e d i d n o t e x t e n d much a b o v e t h e liquid l e v e l i n s i d e of the b o t t l e s . From t h e m a t e r i a l a l r e a d y p r e s e n t e d , i t has p r o b a b l y been e d t h a t t h e l i q u i d i n t h e d i s t i l l a t e chamber i s c o n d e n s e d v a p o r gather phase, and t h a t v a p o r o f t h i s c o m p o s i t i o n i s i n e q u i l i b r i u m w i t h t h e l i q u i d phase w h i c h i s i n t h e r e s i d u e chamber. The s m a l l amount o f l i q u i d i n e a c h chamber w h i c h m i g h t h a v e r e m a i n e d s t a g n a n t d u r i n g t h e r u n was withdrawn. The r e s i d u e chamber a n d v a p o r l i n e h e a t i n g c o i l s w e r e im mediately c u t o f f t o prevent f u r t h e r evaporation o f the l i q u i d phase. The f l a s h b o i l e r h e a t i n g c o i l was l e f t o n t o p r e v e n t l i q u i d f r o m b e i n g drawn i n t o t h e f l a s h b o i l e r f r o m t h e r e s i d u e chamber. One o f t h e p r e p a r e d b o t t l e s m a r k e d f o r u s e a s a c o u n t e r p o i s e , and a s e c o n d b o t t l e was removed f r o m t h e c r u s h e d i c e m e n t i o n e d a b o v e . The b o t t l e s w e r e c h e c k e d t o i n s u r e t h a t n o m o i s t u r e was p r e s e n t on t h e ground g l a s s o f t h e i r n e c k s , d i p p e d i n a c e t o n e t o remove t r a c e s o f w a t e r , dried 13 w i t h clean paper t o w e l s and w e i g h e d . The c o u n t e r p o i s e was p l a c e d o n t h e r i g h t hand balance d u r i n g w e i g h i n g , and r e c o r d i n g o f t h e l a s t two sig n i f i c a n t f i g u r e s was d e l a y e d u n t i l t h e c o l d w e i g h i n g b o t t l e s r e a c h e d stable weight. Beakers o f d r y s i l i c a g e l placed i n the balance a case seemed t o make t h e a m o u n t o f m o i s t u r e c o n d e n s i n g on t h e b o t t l e s slightly less. A f e w d r o p s o f l i q u i d f r o m t h e d i s t i l l a t e chamber d e l i v e r y were t h e n q u i c k l y i n t r o d u c e d i n t o the second w e i g h i n g b o t t l e , the t i p o f the d e l i v e r y tube close t o the surface of the iodide solution. tube holding potassium T h i s b o t t l e was t h e n q u i c k l y r e w e i g h e d , u s i n g t h e c o u n t e r p o i s e as b e f o r e . C a r e was t a k e n t o h a n d l e a n d c o u n t e r p o i s e i n j u s t t h e same w a y . w i t h approximately 0.2 N standardized the weighing bottle The l i b e r a t e d i o d i n e was titrated sodium t h i o s u l f a t e s o l u t i o n t o a s t a r c h i n d i c a t o r end p o i n t . The c o u n t e r p o i s e j u s t u s e d was r e t u r n e d t o t h e p a n o f c r u s h e d f o r l a t e r use. A s e c o n d c o u n t e r p o i s e and a n o t h e r of the prepared w e i g h i n g b o t t l e s was u s e d t o a n a l y z e t h e contents of the residue f o l l o w i n g the procedure o u t l i n e d above. T h i s p r o c e d u r e was u n t i l t h r e e samples had been a n a l y z e d m e n t was g e n e r a l l y q u i t e ice chamber, followed from each o f the chambers. good, and t h e average a n a l y s i s o f t h e Agree samples was t a k e n as t h e c o n c e n t r a t i o n o f e a c h p h a s e . The s o d i u m t h i o s u l f a t e s o l u t i o n s w e r e s t a b a l i z e d b y t h e of 0.1 gram s o d i u m c a r b o n a t e p e r l i t e r o f s o l u t i o n . * ^ addition These s o l u t i o n s w e r e standardized by t i t r a t i o n a g a i n s t 0.2000 N potassium dichromate solution, 7 'Rieman, Neuss, and Naiman, Q u a n t i t a t i v e A n a l y s i s , Second e d i t i o n , (New Y o r k a n d L o n d o n : M c G r a w - H i l l Book Company I n c . , I ? i i 2 ) , p . 2 2 1 . 11* prepared by d i r e c t w e i g h i n g . i o d i d e as a p r e s e r v a t i v e , and S a n d e H , 0 Starch solutions contained mercuric a n d w e r e made u p b y t h e d i r e c t i o n s o f e x c e p t t h a t p o t a t o s t a r c h was u s e d . 2 Kolthoff The p r o c e d u r e u s e d in s t a n d a r d i z i n g sodium t h i o s u l f a t e s o l u t i o n s a g a i n s t potassium dichromate s o l u t i o n was a d a p t e d f r o m t h e p r o c e d u r e g i v e n i n K o l t h o f f a n d Sandell. 1 0 P r a c t i c a l l y n o change o c c u r r e d i n t h e s t a n d a r d o f t h e s o d i u m t h i o s u l f a t e s o l u t i o n s i n t h e t i m e r e q u i r e d f o r t h e i r c o n s u m p t i o n , as v e r i f i e d frequent checks. The S y s t e m Operation this Bromine-Trichloromonofluoromethane of the Equilibrium S t i l l . — B e c a u s e o f the low b o i l i n g p o i n t s y s t e m a number o f d i f f i c u l t i e s w e r e e n c o u n t e r e d . p l a i n e d p r e v i o u s l y , i t was n e c e s s a r y residue by chamber, As has been s t i l l c o u l d be c o n t r o l l e d . ex to construct a cooling c o i l for i n order t h a t the heat applied t o t h i s p o r t i o n o f I t was a l s o d e s i r a b l e that the of the the condensed v a p o r i n t h e d i s t i l l a t e chamber be k e p t w e l l b e l o w i t s b o i l i n g p o i n t . Much o f t h e w o r k o n t h i s s y s t e m was done i n c o l d w e a t h e r , t o r y windows were opened t o keep t h e room t e m p e r a t u r e and t h e low. I n i n t r o d u c i n g s o l v e n t - r i c h solutions i n t o the s t i l l , t o be t a k e n t o p r e v e n t the l i q u i d f r o m suddenly b o i l i n g and l i q u i d i n t o the c o l d t r a p . c a r e was t a k e n t o d e c r e a s e cause l i q u i d t o be d r a w n care O n l y c o l d s o l u t i o n s were so i n t r o d u c e d , the pressure w i t h i n the s t i l l o n l y enough in. K o l t h o f f and S a n d e l l , Textbook o f Q u a n t i t a t i v e (New X o r k r The M a c i t t l l a n C o . , p . 607H 1 1 0 p. 6 1 9 . Ibid., p. 62k. had entraining Q %bid., labora 9 U 7 ) , Analysis. and to 15 A t h i n f i l m o f D o w - C o r n i n g s i l i c o n e s t o p c o c k g r e a s e was u s e d o n the stopcocks i n studying t h i s system. Method o f A n a l y s i s . — T h e g e n e r a l method o f a n a l y s i s a l r e a d y was e v o l v e d t o d e a l w i t h t h e h i g h v o l a t i l i t y o f presented this solvent. At first, t h e w e i g h i n g b o t t l e s o f p o t a s s i u m i o d i d e s o l u t i o n were c o o l e d i n d r y u n t i l c r y s t a l s began t o f o r m . T h i s p r o v e d t o be i m p r a c t i c a l , f o r m o i s t u r e c o n d e n s a t i o n on t h e s u r f a c e however, o f t h e w e i g h i n g b o t t l e s was s o g r e a t a s t o make w e i g h i n g s l e s s e x a c t . A l s o , t h e c r y s t a l s so h a d t o be m e l t e d b e f o r e t i t r a t i o n c o u l d be c o m p l e t e d . ed i s i d e n t i c a l t o t h a t a l r e a d y p r e s e n t e d , studied. formed The m e t h o d f o l l o w except that the weighing b o t t l e s w e r e k e p t somewhat c o l d e r t h a n t h e y w e r e when t h e o t h e r were systems I t was e s p e c i a l l y t r u e i n s t u d y i n g t h i s s y s t e m t h a t b o t t l e s had t o be w e i g h e d q u i c k l y a f t e r ice the i n t r o d u c i n g samples i n t o them. As a f u r t h e r p r e c a u t i o n , t h e b o t t l e s w e r e a g a i n p l u n g e d i n t o i c e after b e i n g w e i g h e d , and were k e p t t h e r e u n t i l t h e s a m p l e s c o u l d be l e s s than a minute l a t e r . titrated Agreement between s e v e r a l a n a l y s e s were u s u a l l y f a i r l y g o o d t o t h e t h i r d d e c i m a l , as e x p r e s s e d i n m o l e f r a c t i o n s . Results from F r a c t i o n a t i n g Column.—Data still i n d i c a t e s t h a t no a z e o t r o p e assurance t h a t no a z e o t r o p e obtained from the equilibrium i s formed i n t h i s system. i s f o r m e d a t 760 As a mm p r e s s u r e n e a r the s o l v e n t - r i c h end o f t h i s system, s o l u t i o n s r i c h i n s o l v e n t were ated. The s m a l l f r a c t i o n a t i n g c o l u m n was u s e d a t mm. final fraction total reflux, and p r e s s u r e o n t h e c o l u m n was m a i n t a i n e d a t 760 Only a few drops d i s t i l l a t e were w i t h d r a w n f o r a n a l y s i s . The a n a l y t i c a l p r o c e d u r e i d e n t i c a l t o t h a t used i n a n a l y z i n g samples f r o m t h e e q u i l i b r i u m of was still. 16 Three samples were a n a l y z e d and t h e r e s u l t s a v e r a g e d . two f r a c t i o n a t i o n s performed are presented i n Table 1 . rather poorly insulated. Ihen the f i r s t Results of T h i s column i s s o l u t i o n was f r a c t i o n a t e d , r o o m t e m p e r a t u r e was a b o u t f i v e d e g r e e s a b o v e t h e c o r r e c t e d r e a d on t h e c o l u m n t h e r m o m e t e r . the temperature TShen t h e 0 . 0 l * ° m o l e f r a c t i o n s o l u t i o n was f r a c t i o n a t e d , r o o m t e m p e r a t u r e was a b o u t t w o d e g r e e s b e l o w t h e c o r r e c t e d t e m p e r a t u r e r e a d on t h e column thermometer. V o l u m e Change o n M i x i n g * — M e a s u r e m e n t o f t h e v o l u m e change o c c u r r i n g o n m i x i n g t r i c h l o r o m o n o f l u o r o m e t h a n e and b r o m i n e was n o t a t t e m p t e d , t h e b o i l i n g p o i n t o f t h e s o l v e n t was b e l o w r o o m t e m p e r a t u r e . because Large c h a n g e s i n t e m p e r a t u r e d u r i n g m e a s u r e m e n t c o u l d n o t be p e r m i t t e d , for t h e e f f e c t o f s u c h c h a n g e s on v o l u m e w o u l d r e n d e r a n y r e s u l t s m e a n i n g less. I t w o u l d be n e c e s s a r y , t h e r e f o r e , t o c a r r y o u t s u c h measurements a t the temperature o f the surroundings. available, of the c o r r o s i v e nature o f bromine. because A i r c o n d i t i o n i n g w a s n o t made The S y s t e m B r o m i n e - l , l - d i c h l o r o - 2 , 2 - d i f l u o r o e t h a n e Operation of the E q u i l i b r i u m S t i l l . — S i n c e the s o l v e n t used i n s y s t e m b o i l e d w e l l above r o o m t e m p e r a t u r e , this and b e c a u s e e q u i l i b r i u m t e m p e r a t u r e s over the e n t i r e system v a r i e d t h r o u g h a small r a n g e , no s p e c i a l d i f f i c u l t i e s were e n c o u n t e r e d . temperature The p r o c e d u r e followed i s t h a t presented under General Procedure f o r Operating the E q u i l i b r i u m Still. D o w - C o r n i n g s i l i c o n e s t o p c o c k g r e a s e was s p a r i n g l y u s e d . Method o f A n a l y s i s . — T h e method o f a n a l y s i s f o l l o w e d f o r t h i s system i s i d e n t i c a l t o t h a t p r e s e n t e d u n d e r G e n e r a l Method o f A n a l y s i s . 17 Results f r o m t h e Small F r a c t i o n a t i n g Column.—From from the equilibrium s t i l l , gram, t h e approximate interpolation. obtained p l o t t e d on a v a p o r - l i q u i d e q u i l i b r i u m composition o f t h e azeotrope A mixture o f very nearly r i c a l l y prepared, the data was o b t a i n e d b y t h i s c o m p o s i t i o n was v o l u m e t - a n d f r a c t i o n a t e d a t a p r e s s u r e o f 760 mm. was c i r c u l a t e d t h r o u g h t h e c o n d e n s e r . I c e water After leaving the s t i l l a t r e f l u x f o r some t i m e , a s m a l l q u a n t i t y o f d i s t i l l a t e was s l o w l y o f f a t a r i g h r e f l u x r a t i o u n t i l t h e temperature discarded. M o r e t h a n 25 m l o f a z e o t r o p e samples were a n a l y z e d at intervals. dia total drawn became c o n s t a n t , a n d was t h e n s l o w l y c o l l e c t e d , a n d Before t a k i n g each sample, t h e c o l u m n was r u n f o r a f e w m i n u t e s a t t o t a l r e f l u x a n d t h e p r e s s u r e was checked. The column t e m p e r a t u r e azeotrope were i s recorded collected. i n T a b l e 3. remained c o n s t a n t w h i l e t h e 25 m l o f Three samples were a n a l y z e d The r e a d i n g and t h e i r average o f t h e column thermometer was c o r r e c t e d t o 1*9 • 5° C . As a n a d d i t i o n a l c h e c k , the d i s t i l l a t e c o l l e c t e d from the small fractionating column as j u s t described, rium s t i l l . The boiling was i n t r o d u c e d i n t o t h e e q u i l i b p o i n t o f the azeotrope m i n e d by means o f t h e r m o c o u p l e readings. t h a t t h e b o i l i n g p o i n t i s nearer 1.9.6° Test f o r P o s s i b i l i t y o f Reaction.—As these e d , however, C than The r e f r a c t i v e 1.9.5° i t deter appears C. mentioned i n t h e i n t r o d u c t i o n , t h e c o n d i t i o n s , d i d n o t seem g r e a t . by the following 760 mm was t h e n From t h e s e r e a d i n g s , p o s s i b i l i t y t h a t bromine would r e a c t w i t h under at l,l-dichloro-2,2-difluoroethane T h i s p o s s i b i l i t y was c h e c k procedure. i n d e x o f f r a c t i o n number 8, f r o m t h e p u r i f i c a t i o n 18 of this solvent ( s e e T a b l e 2 a n d F i g u r e 3) w a s m e a s u r e d a t 25° C and f o u n d t o be 1.3769. A s o l u t i o n c o n s i s t i n g o f 10 p e r c e n t b r o m i n e i n f r a c t i o n number 8, was v o l u m e t r i c a l l y p r e p a r e d a n d f r a c t i o n a l l y d i s t i l l e d i n t h e l a r g e f i v e - f o o t column. the residue. The a z e o t r o p e The r e f r a c t i v e d i s t i l l e d over l e a v i n g c l e a r indices after s o l v e n t as c o n t a c t were d e t e r m i n e d from samples o f l i q u i d t h a t condensed f r o m t h e b o t t o m o f t h e f r a c t i o n a t i n g column. The f i r s t l i q u i d t o c o n d e n s e a f t e r r e m o v i n g t h e d i s t i l l i n g f l a s k and r e p l a c i n g i t w i t h a c l e a n f l a s k , had a r e f r a c t i v e i n d e x o f 1.3785* i s sample # 1 o f T a b l e 6 , a n d The s e c o n d s a m p l e w h i c h i n t o another clean f l a s k had a r e f r a c t i v e i n d e x o f 1.3773. condensed I t appears t o f o l l o w f r o m a s t u d y o f F i g u r e 3 t h a t a t h i r d sample s h o u l d approach t h e v a l u e 1.3769 e v e n more c l o s e l y , b u t n o s u c h sample because o f h o l d u p b y t h e c o l u m n . could be obtained A t t h e end o f t h e d i s t i l l a t i o n t h e d i s t i l l i n g f l a s k was d r y a n d c o n t a i n e d a speck o f c h a r r e d solvent. D i s t i l l a t e f r o m t h e t o p o f t h e column s t i l l c o n t a i n e d t r a c e s o f bromine as i n d i c a t e d b y t h e e f f e c t solution. o f a f e w d r o p s on a s t a r c h - p o t a s s i u m iodide L i q u i d condensing f r o m t h e b o t t o m o f t h e column (samples a n d #2 a b o v e ) was f r e e Incidental o f bromine by t h i s #1 test. t o t h i s t e s t f o r r e a c t i o n , t h r e e samples o f t h e f i r s t f e w m i l l i l i t e r s o f d i s t i l l a t e were a n a l y z e d and f o u n d t o have a c o m p o s i t i o n o f 0.568 m o l e f r a c t i o n b r o m i n e . Atmospheric pressure a few hours b e f o r e m a k i n g t h i s a n a l y s i s was 730*9 mm. T h i s v a l u e t h e n , s h o u l d be a good e s t i m a t e o f t h e composition o f the azeotrope a t 731 mm p r e s s u r e . formed by t h i s system 19 V o l u m e Change on M i x i n g , — T h e for this determination. ing, a p p a r a t u s p r e v i o u s l y d e s c r i b e d was C a r e was t a k e n t o a v o i d m e c h a n i c a l l o s s o n m i x a n d t h e g r a d u a t e d c y l i n d e r was q u i c k l y s t o p p e r e d a f t e r b e i n g The v o l u m e o f t h e m i x t u r e was r e a d a f t e r cooling effect. filled. several intervals of time, assure t h a t the m i x t u r e had r e t u r n e d t o room temperature after the to initial The q u a n t i t i e s o f s o l v e n t a n d b r o m i n e i n t r o d u c e d i n t o the c y l i n d e r were such t h a t t h e r e s u l t i n g m i x t u r e had a p p r o x i m a t e l y composition o f the azeotrope. for used The p e r c e n t i n c r e a s e t h i s s y s t e m w a s f o u n d t o be 1.8. Measurements the i n v o l u m e on m i x i n g w e r e made t o three s i g n i f i c a n t f i g u r e s , b u t due t o l o s s b y e v a p o r a t i o n , p r e c i s i o n beyond t w o s i g n i f i c a n t f i g u r e s was n o t o b t a i n e d . repeated T h i s e x p e r i m e n t was s e v e r a l t i m e s and the i n d i v i d u a l r e s u l t s were averaged. t h i s d e t e r m i n a t i o n are recorded i n Table The S y s t e m B r o m i n e - The d a t a 7. l,2,2-trichloro-l,l-difluoroethane Operation o f the E q u i l i b r i u m S t i l l . — T h e procedure followed i s that presented under General Procedure f o r Operating the E q u i l i b r i u m with the e x c e p t i o n t h a t Dow-Corning s i l i c o n e stopcock grease be u s e d . tions. for could not T h i s g r e a s e was d i s s o l v e d b y b o t h p u r e s o l v e n t a n d i t s A f t e r making the f i r s t c o c k s was f o u n d d e p o s i t e d a t Still, e x p e r i m e n t a l r u n , grease f r o m t h e the lower end o f the f l a s h b o i l e r . solu stop The s o l u t i o n u s e d was d i s c a r d e d , a n d t h e s t i l l was c l e a n e d w i t h a p o t a s s i u m hydroxide-ethanol solution. no l u b r i c a n t . Since Thereafter, n o - l u b s t o p c o c k s were used w i t h t h e s t i l l was o p e r a t e d u n d e r a b o u t 20 mm p r e s s u r e , t h e s e cocks l e a k e d v e r y s l o w l y b u t c o n t i n u o u s l y t h r o u g h o u t each o f the runs. be- The r e s u l t i n g p r e s s u r e d r o p w i t h i n t h e s t i l l was n e g l i g i b l e 20 cause o f t h e l a r g e capacity of the pressure tank, a d j u s t m e n t s w e r e made t o c o m p e n s a t e and because frequent f o r changes i n a t m o s p h e r i c pressure. I n m a k i n g t h e s e r u n s i t was n e c e s s a r y t o i n t r o d u c e s l i g h t l y more t h e u s u a l amount o f s o l u t i o n i n t o t h e e q u i l i b r i u m s t i l l . After than equilib r i u m h a d b e e n e s t a b l i s h e d , a n y e x c e s s was w i t h d r a w n t o a d j u s t t h e l e v e l i n t h e r e s i d u e chamber t o t h a t l e v e l u s e d i n s t u d y i n g t h e two liquid other systems. No d i s a d v a n t a g e s r e s u l t e d f r o m t h i s d i f f i c u l t y , e x c e p t and danger t o t h e o p e r a t o r . Ammonium h y d r o x i d e was p l a c e d a distance from the d e l i v e r y tubes to n e u t r a l i z e vapor w i t h o u t contaminating the Results the escaping gram, t h e approximate interpolation. c o m p o s i t i o n o f t h e a z e o t r o p e was o b t a i n e d a n d f r a c t i o n a t e d a t a p r e s s u r e o f 760 mm. by volumetIce water A f t e r d i s c a r d i n g the f i r s t o f d i s t i l l a t e , more t h a n 30 m l o f a z e o t r o p e w a s c o l l e c t e d , and samples were a n a l y z e d a t i n t e r v a l s . t h e c o l u m n was r u n f o r a f e w m i n u t e s a t p r e s s u r e was obtained p l o t t e d on a v a p o r - l i q u i d e q u i l i b r i u m d i a was c i r c u l a t e d t h r o u g h t h e c o n d e n s e r . sample, bromine A m i x t u r e o f v e r y n e a r l y t h i s c o m p o s i t i o n was r i c a l l y prepared, milliliters considerable tubes. from the Small F r a c t i o n a t i n g Column.—From the data from the e q u i l i b r i u m s t i l l , discomfort few slowly Before t a k i n g each t o t a l r e f l u x , and the checked. A h e a v y vacuum l u b r i c a n t was a p p l i e d t o t h e u p p e r m o s t p o r t i o n the standard taper, male, ground-glass j o i n t at the bottom o f the before attaching the d i s t i l l i n g f l a s k . I t was h o p e d t h a t v a p o r n o t d i f f u s e t h r o u g h the l o w e r p o r t i o n o f t h e j o i n t , t o such an column would extent t h a t t h e l u b r i c a n t w o u l d be d i s s o l v e d b e f o r e d i s t i l l a t i o n c o u l d be of 21 completed. Such, however, was not the case. After analyzing two samples, i t was necessary t o disconnect the heating mantel, because of bromine vapor escaping into the room. Apiezon sealing wax was l i b e r a l l y applied around the j o i n t , and d i s t i l l a t i o n was continued. samples were analyzed. Two more The results o f the best three analyses were averaged and found to be 0.7U7 mole fraction bromine. Throughout the c o l l e c t i o n of the more than 30 ml o f azeotrope, the column temperature remained constant. As a further check, the azeotrope was introduced into the equilibrium s t i l l , and i t s boiling point was determined by thermocouple readings. The corrected reading of the column thermometer, and the temperature reading obtained from the thermocouple agreed within a tenth of a degree. The boiling point o b tained, 5U.6° C, i s recorded in Table f>. Test for P o s s i b i l i t y o f Reaction.*—The refractive index of the mixture of fractions k through 9 from the purification o f this compound (see Table k and Figure 6) was measured at 25° C, and found to be 1.3900. This mixture of fractions was used in making solutions for a l l runs made with this system. A solution consisting of 10 per cent bromine in the solvent was volumetrically prepared and fractionally d i s t i l l e d in the large f i v e f o o t column. The azeotrope d i s t i l l e d over leaving solvent as the residue. The refractive indices after contact were determined from samples of liquid that condensed from the bottom o f the fractionating column. The f i r s t liquid t o condense after removing the d i s t i l l i n g flask and replac ing i t with a clean flask, gave a negative bromine t e s t and had a r e fractive index o f 1.3891. A second sample obtained in l i k e manner also 22 gave a n e g a t i v e bromine t e s t , The d i s t i l l i n g f l a s k m i g h t be m e n t i o n e d h e r e , and had a r e f r a c t i v e contained pale that 1.3899. index o f amber c o l o r e d l i q u i d . It t h e o r i g i n a l l i q u i d as o b t a i n e d f r o m manufacturer was amber c o l o r e d b e f o r e i t was f r a c t i o n a t e d a s i n T a b l e U. The f i r s t i n d i c a t i o n t h a t t h i s s o l v e n t w o u l d d i s s o l v e Corning stopcock grease, the indicated Dow- was d i s c o v e r e d when a f e w d r o p s o f l i q u i d f r o m the d i s t i l l i n g f l a s k were dropped i n t o a potassium i o d i d e - s t a r c h solu tion. sus The s t o p c o c k g r e a s e f l o a t e d t o the l i q u i d surface. pected t h a t most o f t h i s grease It is got i n t o the d i s t i l l i n g f l a s k a f t e r was r e m o v e d f r o m t h e c o l u m n a n d c o v e r e d w i t h a b e a k e r . d e n s i n g on t h e b e a k e r r a n over the greased, thus i n t o the f l a s k . I t was e v i d e n t Hot vapor i t con ground-glass joint, and from the appearance of the grease f i l m t h a t much o f i t h a d d i s s o l v e d . The s a m p l e s c o l l e c t e d f r o m t h e b o t t o m o f t h e c o l u m n f o r t e s t showed n o i n d i c a t i o n o f t h i s amber c o l o r , a n d w e r e of stopcock p r e c e d i n g s y s t e m , so t h a t measurements m i x t u r e w o u l d have r o u g h l y t h e m i x e d , were chosen so t h a t free The p e r c e n t i n c r e a s e d e c i m a l , a n d was f o u n d t o be 0 . 3 . recorded i n Table 7» the in of this t o the t h i r d averaged. decimal t o be due t o c h a n c e r a t h e r than i n v o l u m e was r o u n d e d o f f t o t h e The d a t a the resulting four times, a i d the r e s u l t s Three o f the i n d i v i d u a l r e s u l t s were i n agreement but t h i s precision i s believed as i n The v o l u m e s composition o f the azeotrope The e x p e r i m e n t was r e p e a t e d accuracy. apparently w e r e made e x a c t l y t h e t w o w o u l d be c o m p a r a b l e . bromine and s o l v e n t t h a t were place, above grease. Volume Change o n M i x i n g . — T h e s e system. the for t h i s determination first are CHAPTER IV DISCUSSION OF RESULTS 23 CHAPTER IV DISCUSSION OF RESULTS The System Bromlne-Trichloromonofluoromethane.—Figure 1 i s a p l o t of the equilibrium temperature v s . mole fraction bromine. The lower curve gives the composition of liquid that has atmospheric boiling points corresponding to points on the ordinate. The upper curve gives the composition of vapor that i s in equilibrium with any liquid at i t s b o i l ing point. I t can be seem from this curve that the boiling point i n creases regularly as the mole fraction of bromine in the liquid is i n creased. No azeotrope i s formed. Figure 2 i s a p l o t of mole fraction bromine in the vapor v s . mole fraction bromine in the l i q u i d . The almost asymptotic approach of this curve to the diagonal i s interesting. From the literature i t was found that the vapor-liquid equilibrium diagram of the system ethyl alcohol-water has a very similar shape. In Chapter I I I , i t was mentioned that solutions r i c h in solvent were fractionated t o assure the absence of an azeotrope in this system. Theoretically, any mixture of two liquids showing a regular increase in boiling point, can be separated into i t s components by fractional distillation. The data presented in Table 1, however, indicates that complete separation was not achieved, when solvent-rich mixtures were fractionated at total r e f l u x in the small fractionating column. This disappointing result should not be construed to indicate azeotrope formation, however, as w i l l be explained. The f i r s t liquid 2U f r a c t i o n a t e d was p r e v i o u s l y s e p a r a t e d v a p o r t h a t was 0.2 i n the equilibrium s t i l l into m o l e f r a c t i o n b r o m i n e a n d l i q u i d t h a t was O.h mole f r a c t i o n b r o m i n e , a n d i s t h u s j u d g e d t o have an o v e r - a l l c o m p o s i t i o n o f a b o u t 0.3 mole f r a c t i o n . t i l l a t e t h a t was no azeotrope 0.06H When f r a c t i o n a t e d , t h i s l i q u i d p r o d u c e d mole f r a c t i o n b r o m i n e . e x i s t s between about Fractionation of the 0.0H9 proved t h a t no azeotrope 0.3 and dis This r e s u l t proves 0.06U that mole f r a c t i o n b r o m i n e . mole f r a c t i o n bromine s o l u t i o n s i m i l a r l y i s formed between 0.01*9 and 0*022 mole fraction bromine* If f McCabe a n d T h i e l e s m e t h o d i s a p p l i e d t o F i g u r e 2, and i f i t i s remembered t h a t a t t o t a l r e f l u x t h e o p e r a t i n g l i n e c o i n c i d e s w i t h t h e diagonal, 1 3 ' i t i s s i m p l e t o c o u n t t h e number o f t h e o r e t i c a l plates n e c e s s a r y t o a c h i e v e a g i v e n s e p a r a t i o n o f t h e above s o l u t i o n s . a p p l y i n g t h i s method, i t i s e v i d e n t t h a t about t h r e e or f o u r p l a t e s w o u l d be r e q u i r e d t o go f r o m or from 0.01*9 to 0.022 0.3 to 0.06U mole f r a c t i o n b r o m i n e . By theoretical mole f r a c t i o n bromine The r e l a t i v e l y large number o f p l a t e s r e q u i r e d f o r t h e l a t t e r s m a l l s e p a r a t i o n i s d u e t o t h e n e a r l y asymptotic approach t o t h e d i a g o n a l noted above. comes more d i f f i c u l t , t h a t of pure s o l v e n t . Separation be f o r t h i s r e a s o n , as t h e c o m p o s i t i o n approaches I t i s v e r y p r o b a b l e t h a t t h e s m a l l column u s e d , h a v i n g a p a c k e d s e c t i o n o f o n l y a b o u t 1*0 c e n t i m e t e r s i n l e n g t h , h a s n o more t h a n f o u r t h e o r e t i c a l p l a t e s . I n c o m p l e t e s e p a r a t i o n , t h e n i s due not to the formation o f an azeotrope, b u t to the f a c t that a f r a c t i o n a t i n g c o l u m n h a v i n g a much l a r g e r number o f t h e o r e t i c a l p l a t e s w o u l d be ^ B a d g e r a n d McCabe, E l e m e n t s o f C h e m i c a l E n g i n e e r i n g , S e c o n d e d i t i o n , (New Y o r k a n d L o n d o n ! M c G r a w - H i l l Book Company, I n c . , 1936), p . 357. 25 r e q u i r e d f o r complete separation* The f a c t t h a t no a z e o t r o p e prising. If i s formed i n t h i s system i s not sur the d i f f e r e n c e between the r e s p e c t i v e b o i l i n g p o i n t s o f the two components o f a m i x t u r e i s l a r g e , p o s i t i v e d e v i a t i o n f r o m R a o u l t ' s l a w m u s t be v e r y l a r g e , i n order t h a t the t o t a l vapor pressure o f some m i x t u r e may e x c e e d t h e v a p o r p r e s s u r e o f t h e p u r e l o w - b o i l i n g c o m p o n e n t . The b o i l i n g p o i n t c u r v e w i l l n o t e x h i b i t a m i n i m u m ( a z e o t r o p e ) the unless c o r r e s p o n d i n g v a p o r p r e s s u r e - c o m p o s i t i o n c u r v e h a s a maximum. The d i f f e r e n c e between t h e b o i l i n g p o i n t s o f t r i c h l o r o m o n o f l u o r o m e t h a n e b r o m i n e i s 35.2 degrees centigrade. T h e r e a p p e a r s t o be some e v i d e n c e t h a t azeotrope p o s s i b l y occur i n t h i s system, however. formation could Using H i l d e b r a n d ^ method, 1 S p i c e r and Meyer ^ found t h a t the d i f f e r e n c e between t h e i n t e r n a l s u r e s o f b r o m i n e a n d b e n z o t r i f l u o r i d e was 27UO atm. Even t h o u g h 1 2 pres the b o i l i n g p o i n t o f b e n z o t r i f l u o r i d e i s h& d e g r e e s h i g h e r t h a n t h a t bromine, an azeotrope and of i s formed i n the system b r o m i n e - b e n z o t r i f l u o r i d e . U s i n g t h e same m e t h o d , i t was f o u n d t h a t t h e d i f f e r e n c e between t h e i n t e r n a l p r e s s u r e o f t r i c h l o r o m o n o f l u o r o m e t h a n e and bromine i s 2786 S i n c e i n t h e absence o f hydrogen b o n d i n g t h e d i f f e r e n c e internal 1 i n the p r e s s u r e s o f t h e c o m p o n e n t s ^ i s an i n d i c a t i o n o f t h e amount o f f r o m R a o u l V s l a w t o be e x p e c t e d , i s more l i k e l y t o e x h i b i t a n a z e o t r o p e 1 2 J. (New Y o r k : 1 i t appears ^ deviation to follow that this H . H i l d e b r a n d , S o l u b i l i t y o f N o n - E l e c t r o l y t e s , Second R e i n h o l d P u b l i s h i n g C o r p o r a t i o n , 1936), p p . 98-106. and M e y e r , o £ . c i t . , p. 937. ^Ewell, H a r r i s o n and B e r g , l o c * cit. page 29. system than i s the system bromine- ^Spicer ^See atm. edition, 26 benaotrifluoride. The l i k e l i h o o d o f r e a c t i o n b e t w e e n t h e s o l v e n t a n d b r o m i n e v e r y s m a l l , because the solvent i s already s a t u r a t e d w i t h halogens h i g h e r e l e c t r o n e g a t i v i t y , whose c a r b o n - h a l o g e n b o n d e n e r g i e s than t h a t o f the carbon-bromine bond. is are of larger The s m o o t h n e s s o f t h e t w o e q u i l i b r i u m d i a g r a m s i s a l s o an i n d i c a t i o n t h a t no r e a c t i o n t a k e s p l a c e . A t e s t f o r r e a c t i o n was n o t made, f o r p u r e s o l v e n t was n o t s u c c e s s f u l l y separated from mixtures w i t h bromine* The S y s t e m B r o m i n e - 1, l - d i c h l o r o - 2 , 2 - d i f l u o r o e t h a n e . — E q u i l i b r i u m grams f o r t h i s s y s t e m a r e p r e s e n t e d i n F i g u r e s h a n d 5>. dia Figure k is t e m p e r a t u r e - c o m p o s i t i o n d i a g r a m c o r r e s p o n d i n g t o F i g u r e 1, a discussed a b o v e , and F i g u r e 5 i s a v a p o r c o m p o s i t i o n - l i q u i d c o m p o s i t i o n d i a g r a m c o r r e s p o n d i n g t o F i g u r e 2, above* system e x h i b i t s a b o i l i n g p o i n t a t It i s e v i d e n t from Figure k t h a t I+9#6° C , 9*2 degrees l o w e r than b o i l i n g p o i n t o f the l o w e s t - b o i l i n g pure component. Liquid mixtures of this kind, d i s t i l unchanged a t a d e f i n i t e t e m p e r a t u r e That the b o i l i n g p o i n t depression a t greater mole I n F i g u r e 5 i t i s seen t h a t the curve crosses diagonal at t h i s composition* are c a l l e d azeotropic the azeotrope 7 a n d 8* the which mixtures. s h o u l d be i n t h i s system t h a n i n the system f o l l o w i n g , i s expected the data presented i n Tables from Since the b o i l i n g p o i n t s o f c o m p o n e n t s o f t h i s s y s t e m d i f f e r o n l y b y 0.2 degrees, a very small t i v e d e v i a t i o n f r o m R a o u l t ' s l a w s h o u l d p r o d u c e an a z e o t r o p e . l a r g e r i n c r e a s e i n volume on m i x i n g , and g r e a t e r the At this boiling p o i n t m i n i m u m , b o t h l i q u i d a n d v a p o r h a v e t h e c o m p o s i t i o n 0.581 f r a c t i o n bromine* this cooling effect the posi The observed on m i x i n g t h e components o f t h i s s y s t e m , i n d i c a t e t h a t t h e p o s i t i v e 27 f deviation from Raoult s law i s larger The d i f f e r e n c e these than i n the system f o l l o w i n g . i n i n t e r n a l p r e s s u r e b e t w e e n b r o m i n e and e a c h o f s o l v e n t s a s c a l c u l a t e d b y H i l d e b r a n d ^ m e t h o d , ^ seems t o be i n consistent with t h i s larger deviation from Raoult's ence was f o u n d t o be 2737 23UO law. This differ atm f o r l , l - d i c h l o r o - 2 , 2 - d i f l u o r o e t h a n e , atm f o r l , 2 , 2 - t r i c h l o r o - l , l - d i f l u o r o e t h a n e . However, we m u s t c o n s i d e r t h e e f f e c t o f h y d r o g e n b o n d i n g , w h i c h i s u s u a l l y more 1 than i n t e r n a l pressure d i f f e r e n c e s . ? i n the l i t e r a t u r e , important B o t h o f t h e s e compounds p r o b a b l y f o r m weak h y d r o g e n b o n d s b e t w e e n a d j a c e n t m o l e c u l e s . evidence There i s ample i n d i c a t i n g t h a t weak h y d r o g e n b o n d f o r m a t i o n w i t h t h e use o f a h y d r o g e n atom a t t a c h e d t o a c a r b o n atom o f 1 0 h a l o g e n a t e d h y d r o c a r b o n m o l e c u l e can t a k e p l a c e . * chloroethane and F o r example forms complexes w i t h e t h e r by hydrogen b o n d i n g . a penta- That this a s s o c i a t i o n between l i k e molecules by hydrogen bonding i s weak, i s dicated by the f a c t t h a t n e i t h e r water. in o f t h e s e compounds i s v e r y s o l u b l e in Because C H C I 2 C H F 2 c o n t a i n s t w o h y d r o g e n a t o m s , a n d one o f these h y d r o g e n atoms i s a t t a c h e d t o a c a r b o n a t o m t h a t h a s t w o f l u o r i n e atoms a t t a c h e d t o i t , p o s s i b i l i t i e s o f h y d r o g e n bond f o r m a t i o n appear greater i n t h i s compound t h a n i t i s i n CHC^CT^Cl. If this is t o be true, more h y d r o g e n bonds w i l l be b r o k e n when b r o m i n e i s i n t r o d u c e d i n t o ^Hildebrand, ^Ewell. loc. this cit. H a r r i s o n and B e r g , l o c . cit. S . G l a s s t o n e , T r a n s , F a r a d a y S o c . 33, 200 (1937); D. B . McLeod a n d F . J . W i l s o n , I b i d . T l T T 59b (1935TT"G."T. Z e l l h o e f e r , M. J . C o p l e y , a n d C. S . M a r v e l , Chem. S o c . , 60, 1337 (1938); G. F . Z e l l h o e f e r a n d M. J . C o p l e y , I b i d . 65Tl3UJTl93^T. l 8 TTlm. 28 s o l v e n t , t h a n a r e b r o k e n when b r o m i n e i s i n t r o d u c e d i n t o s o l v e n t o f t h e following system. T h i s b r e a k i n g o f hydrogen b o n d s , causes a n i n c r e a s e i n t h e p a r t i a l molar volume and vapor p r e s s u r e o f t h e s o l v e n t i n i t s m i x t u r e s , and t h e r e f o r e a p o s i t i v e d e v i a t i o n from R a o u l t * s l a w . I n the l i g h t o f the p o s s i b i l i t y o f hydrogen bonding, i t i s n o t s u r p r i s i n g t h a t i n c r e a s e i n volume o n m i x i n g i s g r e a t e r w i t h t h e components o f t h i s system, and t h a t t h e b o i l i n g p o i n t depression a t t h e azeotrope i s l a r g e r i n t h i s system t h a n i n t h e system f o l l o w i n g . The r e s u l t of t h e t e s t f o r r e a c t i o n between t h e components o f t h i s s y s t e m was n o t c o n c l u s i v e , b u t s u p p o r t s t h e c o n t e n t i o n t h a t n o r e a c t i o n takes place. A n e x a m i n a t i o n o f T a b l e 6 a n d F i g u r e 3, indicates t h a t t h e r e f r a c t i v e i n d e x o f s a m p l e # 1 was w e l l w i t h i n t h e r a n g e o f h i g h e r - b o i l i n g f r a c t i o n s o f CHC12CHF2* I t i s evident t h a t i n separating s o l v e n t f r o m i t s b r o m i n e m i x t u r e t h e s o l v e n t was f r a c t i o n a t e d , a n d sample # 1 , b e i n g t a k e n f r o m t h e l a s t p o r t i o n o f l i q u i d t o l e a v e t h e drying s t i l l p o t , contained the highest b o i l i n g f r a c t i o n o f f r a c t i o n number 8. That fraction number ing l i q u i d i s n o t unexpected. 8 should contain That traces o f higher the refractive boil i n d e x o f sample # 2 , c o l l e c t e d a f t e r removing o n l y about two m i l l i l i t e r s o f l i q u i d from t h e b o t t o m o f t h e c o l u m n , was much c l o s e r t o t h e r e f r a c t i v e i n d e x o f f r a c t i o n number 8 b e f o r e c o n t a c t w i t h b r o m i n e , i s i n d i c a t i o n t h a t o n l y a t r a c e o f h i g h e r b o i l i n g l i q u i d was p r e s e n t . The s m o o t h n e s s o f t h e e q u i l i b r i u m c u r v e i n F i g u r e s k a n d 5 i s further i n d i c a t i o n t h a t no r e a c t i o n took p l a c e . The S y s t e m B r o m i n e - 1 , 2 , 2 - t r i c h l o r o - l , 1 - d i f l u o r o e t h a n e . — F i g u r e s 7 a n d 8 are t h e e q u i l i b r i u m diagrams f o r t h i s system. I t c a n be seen f r o m 29 Figure 7 t h a t an azeotrope having a composition o f bromine, and a b o i l i n g p o i n t o f F i g u r e 8, i t c a n b e s e e n t h a t 5U.6 0 0.7U7 mole fraction C i s formed i n t h i s system. In the vapor-composition v s . liquid-composi t i o n c u r v e c r o s s e s t h e d i a g o n a l a t 0.7U7 m o l e f r a c t i o n b r o m i n e * From t h e f i g u r e s c i t e d above f o r t h e system b r o m i n e - b e n z o t r i f l u oride, i t appears t h a t azeotrope system. f o r m a t i o n s h o u l d be e x p e c t e d i n t h i s This system has a d i f f e r e n c e o f o n l y 1 3 . 0 degrees between t h e b o i l i n g p o i n t s o f t h e components, and a d i f f e r e n c e the estimated i n t e r n a l pressures. h$*0 internal of 2737 atm between The s y s t e m c i t e d h a s a d i f f e r e n c e o f d e g r e e s between b o i l i n g p o i n t s , and a d i f f e r e n c e o f 271*0 a t m i n pressures. I n making t h i s c o m p a r i s o n , i t was n o t i c e d t h a t t h e i n c r e a s e i n volume on m i x i n g b e n z o t r i f l u o r i d e a n d bromine as r e p o r t e d b y S p i c e r and M e y e r , was many t i m e s g r e a t e r system. t h a n t h e change i n volume f o u n d w i t h Since t h e i n t e r n a l p r e s s u r e s o f b e n z o t r i f l u o r i d e and 1 , 2 , 2 - t r i c h l o r o - 1 , 1 - d i f l u o r o e t h a n e a r e e s s e n t i a l l y t h e same, i t f o l l o w s benzotrifluoride pound. will this must be more highly associated than i s the latter that com The c o n c l u s i o n t h a t b e n z o t r i f l u o r i d e m o l e c u l e s a r e a s s o c i a t e d a l s o e x p l a i n t h e i n c o r r e c t c o n c l u s i o n drawn i n comparing t h e system b r o m i n e - t r i c h l o r o m o n o f l u o r o m e t h a n e w i t h t h e system broraineb e n z o t r i f l u o r i d e o n p a g e 25. The b e n z o t r i f l u o r i d e m o l e c u l e s a r e p r o b a b l y a t t r a c t e d t o each o t h e r t h r o u g h d i p o l e association. The r e s u l t o f t h e t e s t f o r r e a c t i o n b e t w e e n b r o m i n e a n d 1 , 2 , 2 t r i c h l o r o - l , 1 - d i f l u o r o e t h a n e was n o t c o n c l u s i v e . however, t h a t no r e a c t i o n o c c u r r e d . This t e s t indicates^ The argument i s s i m i l a r t o t h a t p r e s e n t e d f o r absence o f r e a c t i o n between t h e components o f t h e l a s t 30 system. I n s p e c t i o n o f T a b l e 6 and F i g u r e 6 shows t h a t t h e i n d e x o f s a m p l e #1 was w e l l w i t h i n t h e r a n g e of s l i g h t l y higher-boiling fractions. g r e a t l y d i f f e r from the r e f r a c t i v e F i g u r e 6« of the r e f r a c t i v e I n f a c t , t h e f i g u r e does i n d e x o f f r a c t i o n number 9 The r e f r a c t i v e i n d e x o f s a m p l e #2 from t h a t o f t h e o r i g i n a l s o l v e n t w i t h i n the range of The i n d i c a t i o n i s t h a t t h e s l i ^ i t index a f t e r indices not of F r a c t i o n number 9 was i n c l u d e d i n t h e s o l v e n t m i x e d w i t h bromine f o r t h i s t e s t . error. refractive differs experimental change o b s e r v e d i n refractive c o n t a c t w i t h b r o m i n e , was due t o f u r t h e r f r a c t i o n a t i o n , n o t t o r e a c t i o n between bromine and t h e In general, systems s t u d i e d are and solvent. the experimentally obtained r e s u l t s from a l l the i n a c c o r d w i t h what m i g h t have been p r e d i c t e d a c o n s i d e r a t i o n of the p r o p e r t i e s o f these systems. from APPENDIX I TAELES AND FIGURES 31 Table 1. Temperature °C V a p o r - L i q u i d E q u i l i b r i a D a t a f o r t h e System B r o m i n e - T r i c h l o r omonofluoromethane• Mole F r a c t i o n Bromine i n Vapor Mole F r a c t i o n Bromine i n Liquid 23.6 0.000 0.000 23.7 0.022 0.031 28.1 0.21*9 0.506 29.2 0.292 0.597 3U. 8 o.ia6 0.823 39.6 0.520 0.911 1*1.2 0.563 0.925 50.5 0.80)4 0.977 58.3 1.000 1.000 F r a c t i o n a l d i s t i l l a t i o n o f a s o l u t i o n , which i n the e q u i l i b r i u m s t i l l p r o d u c e d v a p o r t h a t w a s 0.2 m o l e f r a c t i o n b r o m i n e a n d l i q u i d t h a t was 0.1* m o l e f r a c t i o n b r o m i n e , p r o d u c e d a d i s t i l l a t e t h a t was O.O6I4 mole f r a c t i o n b r o m i n e . U s i n g t h e same c o l u m n , f r a c t i o n a l d i s t i l l a t i o n o f 0.0l;9 m o l e f r a c t i o n b r o m i n e s o l u t i o n p r o d u c e d a 0.022 m o l e f r a c t i o n d i s t i l l a t e a n d a 0.11° m o l e f r a c t i o n r e s i d u e . 32 T a b l e 2. Fractional Distillation o f 1,l-dichloro-2,2-difluoroethane• Temperature °C (uncorr.) E s t i m a t e d Volume Distillate i n ml 52.9 0 1 57.6 18 1*3773 2 58.0 3U 1.3781 3 58.3 70 1.3779 h 58J4 10U 1.3776 5 58.5 11+9 1.3772 6 58.6 183 1.3770 7 58.7 218 1.3769 oo Fraction Number 59.0 252 1.3769 9 59.U 267 1.3772 10 59.9 297* 1.3879* Liquid before f r a c t i onation R e f r a c t i v e Index a t 25° C 1.3780 The b o i l i n g p o i n t o f f r a c t i o n number 7 was d e t e r m i n e d i n t h e e q u i l i b r i u m s t i l l a t 760 mm p r e s s u r e , a n d f o u n d t o b e 59.2° C . T h i s v a l u e c a n be u s e d t o c o r r e c t t h e u n c o r r e c t e d t e m p e r a t u r e r e a d i n g s g i v e n in this table. * T h e r e s i d u e i n t h e d i s t i l l i n g f l a s k was a d d e d t o f r a c t i o n number 10 b e f o r e t h e s e v a l u e s w e r e d e t e r m i n e d . 33 T a b l e 3. Temperature °C V a p o r - L i q u i d E q u i l i b r i a Data f o r t h e System Bromine- l , l - d i c h l o r o - 2 , 2 - d i f l u o r o e t h a n e . Mole F r a c t i o n Bromine i n Vapor Mole F r a c t i o n Bromine in Liquid 59.0 0.000 0.000 57.0 0.113 0.01*6 $k.h 0.21*6 0.123 53.7 0.293 0.1ft 51.2 O.Wtf 0.307 5o.o 0.559 0.509 1*9.9 0.565 0.5U2 1*9.7 0.578 0.567 1*9.6 0.531 0.581 1*9.8 0.622 O.691 51.0 0.702 0.825 52.2 0.762 0.893 55.5 0.882 0.972 53.8 1.000 1.000 3k Temperature °C (uncorr,) Estimated Volume D i s t i l l a t e in ml 70.1 0 1 70,9 17 1.3917 2 70.9 3k 1.3910 3 71.0 67 1.3909 k 71.1 100 1.3908 5 71.1 133 1.3900 6 71.1 167 1.3899 7 71.2 200 1.3895 CO Table 1.. Fractional D i s t i l l a t i o n of 1,2,2-trichloro-l,1-difluoroethane• Fraction Number 71.2 233 1.389U 9 71.2 268 1.3893 10 71.2 282 1.3892 11 71.2 291 1.3891 Drainage from fractionating column Refractive Index at 25° C 1.3979 35 T a b l e 5* Temperature °C V a p o r - L i q u i d E q u i l i b r i a Data f o r t h e System Bromine- 1 , 2 , 2 - t r i c h l o r o - l , 1 - d i f l u o r o e t h a n e * Mole F r a c t i o n Bromine i n Vapor Mole f r a c t i o n Bromine i n Liquid 71.8 0.000 0.000 70.0 0.085 0.026 63*6 0.359 0.163 57.8 0.553 0.3U2 56.5 0.638 0.1*79 55.2 0.722 0.61*1 5U.6 0.7U7 0.7U7 55.1 0.805 0.831* 56.5 0.903 0.91*9 58.8 1.000 1.000 36 T a b l e 6. Solvent fraction Number CHC1 CHF 2 2 CHC1 CF C1 2 Data on Tests f o r Evidence o f R e a c t i o n 2 8 k - 9 Refractive Index a t 25° C B e f o r e C o n t a c t w i t h Br2 1.3769 1.3900 Refractive Index a t 25° C A f t e r C o n t a c t w i t h Br2 Sample # 1 , 1.3785 Sample #2, 1.3773 Sample # 1 , 1.3891 Sample #2, 1.3899 37 T a b l e 7. Solvent Temp. °C CHC1 CHF 2 2 CHC1 CF C1 2 2 D a t a o n V o l u m e Changes O b s e r v e d on M i x i n g , Vol. of Bromine ml Vol, of Solvent ml Ideal Vol, of Mixture ml Actual Vol. of Mixture ml % Volume Increase 29 1.71 2,25 3.96 U.03 1.8 31 2.37 1.60 3.97 3.98 0.3 N o t i c e a b l e c o o l i n g o c c u r r e d on m i x i n g , a n d t h e e f f e c t t o be g r e a t e r f o r C H C 1 C H F . 2 2 appeared 38 Table Component B . P . at 8. The P h y s i c a l P r o p e r t i e s o f t h e Components o f t h e S y s t e m s I n v e s t i g a t e d . Obs. 760 mm Diff. in B.P.'s of Br2 and Solvent °C °C Br 58.8 2 CCI3F CHC1 CHF 2 2 CHC1 CF C1 2 2 a Company, Density Internal Pressure Estimate gm/ml atm Diff. in Estimated Internal Pressure o f Br2 and Solvent atm 3.119 (20) a 51*17 3.102 (25) b 5387 23.6 35-2 1.U9U (17.2) c 2631 2786 59.0 00.2 l.U9k (I6.1 ) d 3077 231*0 71.8 13.0 1.51*5 ( 2 5 ) 2650 2737 I n t e r n a t i o n a l C r i t i c a l Tables, 1928), I I I , p . 20. ^Loc. (t°C) + e (New Y o r k : McGraw H i l l Book cit. C F. Swarts, Ber., d F. Swarts, J. e A. L . Henne a n d E. C . L a d d , 26 R e f . , 291 Chim. P h y s . , (1893). 20, 30 (1923). J. Am. Chem. S o c . , 58, 1*03 (1936). 39 0.0 0.2 O.lj. 0.6 0.8 MOLE F R A C T I O N B R O M I N E FIGURE 1 T E M P E R A T U R E - C O M P O S I T I O N D I A G R A M FOR THE SYSTEM B r - CCI3F A T 760 mm PRESSURE 2 O v a VAPOR, O - LIQUID • VAPOR A N D L I Q U I D 1.0 0.0 0.2 O.lj. 0.6 0.8 HOLE FRACTION BROMINE I N LIQUID FIGURE 2 VAPOR-LIQUID EQUILIBRIUM DIAGRAM FOR THE SYSTEM B r ? - CCl^F AT 760 mm PRESSURE J 1.0 FRACTION NUMBER ? 4 - ^ * 7 60 [ I1.3780 6> o o E 50 100 200 300 VOLUME I N M I L L I L I T E R S FIGURE 3 FRACTIONAL DISTILLATION OF CHC1 CHF2 2 O = TEMPERATURE VS VOLUME • FRACTIONS Z REFRACTIVE INDEX VS VOLUME i4.,5,6,7 AND 8 WERE USED I N THIS INVESTIGATION 1*2 65 6o F o o Eh 55 h 50 ^5 o.o 0.1; 0.2 0.6 0.8 MOLE F R A C T I O N B R O M I N E FIGURE lj. T E M P E R A T U R E - C O M P O S I T I O N D I A G R A M FOR T H E S Y S T E M Br - C H C 1 G H F A T 760 mm PRESSURE 2 2 2 O s VAPOR, • = L I Q U I D Q = VAPOR A N D L I Q U I D 1.0 1*3 0.0 0.2 0.1^ 0.6 MOLE F R A C T I O N B R O M I N E FIGURE 0.8 IN LIQUID $ V A P O R - L I Q U I D E Q U I L I B R I U M DIAGRAM FOR T H E S Y S T E M B r - CHCL?CHF 2 A T 760 mm PRESSURE * 2 1.0 FRACTION NUMBER VOLUME I N M I L L I L I T E R S FIGURE 6 FRACTIONAL DISTILLATION OF CHCI2CF2CI O = • « FRACTIONS TEMPERATURE VS VOLUME REFRACTIVE INDEX VS VOLUME 4 . 5 , 6 , 7 , 8 AND 9 WERE USED I N THIS INVESTIGATION 50 I 0.0 i . i . i 0,1+. 0,2 . 0,6 i 0,8 MOLE F R A C T I O N B R O M I N E FIGURE 7 T E M P E R A T U R E - C O M P O S I T I O N D I A G R A M FOR T H E SYSTEM B r - C H C 1 C F C 1 A T 7&0 mm P R E S S U R E 2 2 2 O = VAPOR, • = L I Q U I D © = VAPOR AND LIQUID 1 1,0 U6 0,0 0,2 0,6 O.lj. MOLE F R A C T I O N BROMINE FIGURE 0,8 IN LIQUID 8 V A P O R - L I Q U I D E Q U I L I B R I U M DIAGRAM FOR T H E S Y S T E M B r CHC1 CF C1 A T 7o0 mm P R E S S U R E * 2 P P 1.0 k7 FIGURE 9 EQUILIBRIUM S T I L L a DISTILLATE CHAMBER; b FLASH BOILER; 0 RESIDUE CHAMBER; d VAPOR L I N E ; e , a CONDENSERS; f , f , f HEATING COILS; g COOLING C O I L ; h COLD TRAP; i TWO-WAY STOPCOCK; J TO PRESSURE TANK; k TO WATER ASPIRATOR; 1 NO-LUB STOPCOCKS; m DISTILLATE CHAMBER DELIVERY TUBE; n RESIDUE CHAMBER DELIVERY TUBE; o, O STANDARD TAPER GROUND-GLASS JOINTS; p THERMOCOUPLE WELL U8 FIGURE 10 DRYING TRAIN APPENDIX II SAMPLE CALCULATIONS k9 APPENDIX II SAMPLE CALCULATIONS A n a l y s i s o f a Sample The c a l c u l a t i o n s i n v o l v e d i n m a k i n g e a c h a n a l y s i s i s by the f o l l o w i n g demonstrated example: Data Weight o f weighing b o t t l e o f K I s o l u t i o n — Weight o f w e i g h i n g b o t t l e and K I s o l u t i o n + sample— Weight o f sample — Milliliters of 0.2012 N Na2S203 1U.U818 gm lf>.20£2 gm 0.723U gm standard s o l u t i o n t o t i t r a t e t h e sample — 1U.8U ml Calculation The r e a c t i o n s i n v o l v e d 2KI 2 + Br S °3 + 2 2 are: =• 2 I = 2 KBr t I 2 IT S 0 "i6 U A l a r g e e x c e s s o f K I was m a i n t a i n e d t o r e d u c e t h e v o l a t i l i z a t i o n of iodine by the formation of t r i - i o d i d e i o n s : i- + Prom t h e s e c o n d e q u a t i o n i t i 2 = i 3 - c a n be s e e n t h a t t h e w e i g h t o f i o d i n e i s one a t o m i c w e i g h t . equivalent From t h e f i r s t e q u a t i o n i t e v i d e n t t h a t one a t o m i c w e i g h t o f i o d i n e i s e q u i v a l e n t t o one is atomic weight of bromine. I t follows then, that the equivalent weight of bromine i s i t s atomic w e i g h t . E q u i v a l e n t weights o f bromine = Normality of Na S203 2 Milliliters of x solution Na2S203 1000 = 0.2012 x jjj^* = 0.002986 Moles o f bromine = = 1/2 x E q u i v a l e n t w e i g h t s o f b r o m i n e 1/2 x 0.002986 = 0.0011*93 Weight o f bromine = E q u i v a l e n t weights o f bromine x Equivalent weight o f bromine - 0.002986 x 79.92 = 0.2386 gm W e i g h t o f CHC1 CHF2 2 W e i g h t o f sample - W e i g h t o f bromine - 0.723U - 0.2386 = 0.1*81*8 gm M o l e s CHC1 CHF 2 2 _ - W e i g h t o f CHC1 CHF Molecular w e i ^ t o f 2 = = 2 CH61 <^ 2 0.003593 T o t a l m o l e s = M o l e s o f b r o m i n e + M o l e s o f CHC1 CHF2 2 = 0.0011*93 + 0.003593 = 0.005086 Mole f r a c t i o n bromine — Moles o f bromine T o t a l moles _ 0.0011*93 _ n 9 o U - o.oo5o86 - ° ' 29U 2 51 Determination o f Change i n Volume on M i x i n g Data Volume o f b r o m i n e a d d e d — 1.71 m l Volume o f 2.25 ml U.03 ml added- CHC1 CHF2 2 A c t u a l volume o f m i x t u r e Calculation I d e a l v o l u m e o f m i x t u r e = Volume o f b r o m i n e + Volume o f CHCI2CHF2 added =• 1.711 2.25 = 3.96 Volume i n c r e a s e — A c t u a l v o l u m e o f m i x t u r e - I d e a l v o l u m e o f m i x t u r e = U.03 - 3.96 - 0.07 Per i c e n t volume i n c r e a s e = n c ml r e a S ^ A „ x 100 I d e a l volume o f m i x t u r e = § g x K 0 = l.B Estimation of Internal Pressure 1 0 Data Solvent — CHC1 CF C1 2 2 O b s e r v e d b o i l i n g p o i n t o f s o l v e n t a t 76O mm — 71.8° D e n s i t y o f s o l v e n t a t 25° C — 1.5U5 C go/ml Calculation E n e r g y o f v a p o r i z a t i o n =• AE y = 5280 + (2lw5 x atmospheric p o i n t i n ° C) = M o l a r v o l u m e a t 25° 5280 +• (2U.5 x 71.8) - 7039 c a l C = V = Molecular weight D e n s i t y a t 25° C boiling v I n t e r n a l pressure = 2222- = 6U.19 109.7 V 6U.19 S i ml x la.29 1111 ; a t f f i cal = 2650 atm cal/ml 53 BIBLIOGRAPHY Badger. W. L., and W. L. McCabe. Elements of Chemical Engineering, Second edition, New York and London: McGraw-Hill Book Company, Inc., 1936. p. 357. R Ewell, . H., J. M. Harrison, and L. Berg, Industrial and Engineering Chemistry, 36, 871 (19U.). Glasstone, S., Transaction of tte Faraday Society, 33, 200 (1937). Henne, A. L., and E. C. Ladd, Journal of the American Chemical Society, 58, 1.03 (1936). Henne, A. L., and Thomas Midgley, Jr., Journal of the American Chemical Society, 58, 882 (1936). Hildebrand, J. H., Solubility of Non-ELectrolytes, Second edition, New York: Reinhold PublishingTorporation, 1936. pp. 98-106. Jones, C. A., E. m. Schoenborn, and A. P. Colburn, Industrial and Engineer ing Chemistry, 35, 666 (19U3). Kolthoff, I. M., and E. B. Sandell, Textbook of Quantitative Analysis, New York: The MacMillan Co., 19l*7. p. 608. McLeod, D, B., and F. J. Wilson, Transaction of the Faraday Society, 3 1 , 596 (1935). ~~ National Research Council of the United States of America, International Critical Tables of Numerical Data, Physics, Chemistry and Technology, New torkt McGraw-Hill Book Company, 192b'. Vol. Ill, p. 2*5. Rieman, W,, J, D Neuss, and B, Naiman, Quantitative Analysis, Second edition, New York and London: McGraw-Hill Book Company, Inc., 191+2. p. 2 2 1 . # Simons, J, H., Industrial and Engineering Chemistry, 3j?, 21*0 (191*7). Spicer, W. M., and J. Kruger, Journal of the American Chemical Society, 72, 1855 (1950). Spicer, **, m., and L, H. Meyer, Journal of the American Chemical Society, 73, 93^ ( 1 9 5 D . Swarts, F., Berichte der Deutschen Chemischen Gesellschaft, 26 Ref., 291 (1893). Swarts, F., J o u r n a l de c h l m i e p h y s i q u e , Z e l l h o e f e r , G. F . , S o c i e t y , 60, 13U3 20, 30 (1923). a n d M. J . C o p l e y , J o u r n a l o f t h e A m e r i c a n C h e m i c a l (1938). Z e l l h o e f e r , G . F , M. J . C o p l e y , a n d C. S . M a r v e l , J o u r n a l o f t h e A m e r i c a n C h e m i c a l S o c i e t y , 60, 1337 (1938) • 4
© Copyright 2025 Paperzz