Integration of squareroot tanx dx? Solution:

Integration of squareroot tanx dx?
Solution:
π‘Šπ‘’ 𝑛𝑒𝑒𝑑 π‘‘π‘œ 𝑓𝑖𝑛𝑑 ∫ √tan x dx
First, we can make a u βˆ’ substitution. Let u = √tan x. Then du =
sec2 xdx
2√tan x
dx
= 2 cos2 x
√tan x
.
Recall , cos2 x + sin2 x = 1. If we factor out a cos 2 x on the left side, we get (cos2 x)(1 +
tan2 x) = 1. Now we can rewrite the integral:
√tan x
∫ √tan x dx = ∫
dx
(cos 2 x)(1 + tan2 x)
Now, in integrand we multiply the nominator and the denominator by 2√tan x. After doing this,
we get:
2 tan x
∫ √tan x dx = ∫
dx
(2cos2 x)√tan x (1 + tan2 x)
2 tan x = 2u2 and 1 + tan2 x = 1 + u4 . If we rewrite the integrand in terms of variable u, we
get:
2u2
∫ √tan x dx = ∫
du
1 + u4
Then, we can factor 1 + u4 as:
1 + u4 = (u2 + u√2 + 1)(u2 βˆ’ u√2 + 1);
Now we can rewrite the integral:
2u2
∫ √tan x dx = ∫
du
(u2 + u√2 + 1)(u2 βˆ’ u√2 + 1)
Now, we have to use partial fractions:
2u2
Au + B
Cu + D
=
+
(u2 + u√2 + 1)(u2 βˆ’ u√2 + 1) u2 + u√2 + 1 u2 βˆ’ u√2 + 1
In the right side we reduce terms to a common denominator. Then we go through and equate
the coefficients of each power of u in the left side and in the right side so that we can solve
for A, B, C, and D.
2u2
(u2 + u√2 + 1)(u2 βˆ’ u√2 + 1)
⟹
2u2
(u2 + u√2 + 1)(u2 βˆ’ u√2 + 1)
=
=
Au + B
u2 + u√2 + 1
+
Cu + D
u2 βˆ’ u√2 + 1
(Au + B)(u2 βˆ’ u√2 + 1) + (Cu + D)(u2 + u√2 + 1)
(u2 + u√2 + 1)(u2 βˆ’ u√2 + 1)
⟹ 2u2 = (Au + B)(u2 βˆ’ u√2 + 1) + (Cu + D)(u2 + u√2 + 1)
⟹ 2u2 = Au3 βˆ’ Au2 √2 + Au + Bu2 βˆ’ Bu√2 + B + Cu3 + Cu2 √2 + Cu + Du2 + Du√2 + D
⟹ 2u2 = (A + C)u3 + (βˆ’A√2 + B + C√2 + D)u2 + (A βˆ’ B√2 + C + D√2)u + (B + D)
Equations derived from coefficients near similar terms:
A + C = 0(I)
βˆ’A√2 + B + C√2 + D = 2 (II)
A βˆ’ B√2 + C + D√2 = 0 (III)
B+D=0
(IV)
{
Equations (I) and (IV) tell us that C = βˆ’A and D = βˆ’B. Using that information, we replace the
expressions in equations (II) and (III). This gives us the following:
βˆ’A√2 + B + (βˆ’A)√2 + (βˆ’B) = 2 ⟹ A = βˆ’
√2
2
A βˆ’ B√2 + (βˆ’A) + (βˆ’B)√2 = 0 ⟹ B = 0
So, we see that C =
√2
and
2
D = 0. Now, we go back to our partial fractions and fill in A, B, C,
and D. Doing this, we have the following:
2
2u
(u2 + u√2 + 1)(u2 βˆ’ u√2 + 1)
=
√2
βˆ’( 2 )u + 0
u2 + u√2 + 1
+
√2
( 2 )u + 0
u2 βˆ’ u√2 + 1
=
√2
√2
βˆ’ 2 u
2 u
=
+
u2 + u√2 + 1 u2 βˆ’ u√2 + 1
Finally, returning to the original problem, we can rewrite the integral as follows:
√2
√2
u
u
2
2
∫ √tan x dx = ∫(
+
)du
u2 + u√2 + 1 u2 βˆ’ u√2 + 1
Now, we can break ∫ √tan x dx into two different integrals. Also, we can rewrite the numerator
of both integrals. Doing so will allow us to continue our integrations.
βˆ’
Notice that
√2
u
2
=
√2
(2u
4
1
βˆ’ √2) + 2 and likewise that βˆ’
√2
u
2
=βˆ’
√2
(2u
4
1
+ √2) + 2 . The
reason for this will become evident shortly. Here is the first part of the integration, broken into
two separate pieces.
βˆ’
√2
u
2
∫ u2 +u√2+1 du = ∫
√2
(2u+√2)
4
u2 +u√2+1
βˆ’
1
2
du + ∫ u2 +u√2+1 du
Now, let us consider the first of these two integrals: ∫
√2
(2u+√2)
4
u2 +u√2+1
βˆ’
du
Here, the substitution is actually straightforward because of the above work. Let Ξ½ = u2 +
+u√2 + 1. Then that means that dν = (2u + √2)du, which is precisely what we have above.
(The constant can be factored out.) That means that we have:
∫
√2
(2u+√2)
4
u2 +u√2+1
βˆ’
du = βˆ’
√2 dν
∫ν
4
=βˆ’
√2
ln|Ξ½|
4
+ C1 = βˆ’
√2
ln|u2
4
+ u√2 + 1| + C1
1
2
Second integral: ∫ u2 +u√2+1
du
1
1
1
1
2
=
=
=
=
u2 + u√2 + 1 2(u2 + u√2 + 1) 2u2 + 2u√2 + 2 2u2 + 2u√2 + 1 + 1
=
1
2
(u√2 + 1) + 1
=
1
√2
βˆ™
2
√2 (u√2 + 1) + 1
=
√2
√2
βˆ™
2 (u√2 + 1)2 + 1
That means that we have the following:
1
√2
√2
2
∫
𝑑𝑒 =
∫
𝑑𝑒
2 (π‘’βˆš2 + 1)2 + 1
𝑒2 + π‘’βˆš2 + 1
We can finally integrate further, if we use another substitution. Let 𝜈 = π‘’βˆš2 + 1, then
π‘‘πœˆ = √2𝑑𝑒 . Using that substitution, we have:
√2
√2
𝑑𝑒
∫
2
2
(π‘’βˆš2+1) +1
=
π‘‘πœˆ √2
√2
∫ 𝜈2 +1= 2 π‘‘π‘Žπ‘›βˆ’1 𝑣
2
+ 𝐢2 .
Evaluating this, we have
1
√2
2
∫
𝑑𝑒 =
π‘‘π‘Žπ‘›βˆ’1 (π‘’βˆš2 + 1) + 𝐢2
2
2
𝑒 + π‘’βˆš2 + 1
Putting this all together, we have done half of the integration. So far, we have shown:
√2
βˆ’ 2 𝑒
√2
√2
∫
= βˆ’ (βˆ’
𝑙𝑛|𝑒2 + π‘’βˆš2 + 1| + 𝐢1 ) + ( π‘‘π‘Žπ‘›βˆ’1(π‘’βˆš2 + 1) + 𝐢2 )
4
2
𝑒2 + π‘’βˆš2 + 1
√2
𝑒
2
√2
𝑒
2
Now, thankfully, something similar happens for ∫ 𝑒2 βˆ’π‘’βˆš2+1 𝑑𝑒.We rewrite ∫ 𝑒2 βˆ’π‘’βˆš2+1 𝑑𝑒
√2
(2π‘’βˆ’βˆš2)
1
2
as ∫ 𝑒42 βˆ’π‘’βˆš2+1 𝑑𝑒 + ∫ 𝑒2 βˆ’π‘’βˆš2+1
𝑑𝑒.
For the first integral, we again use a substitution. Let 𝜈 = 𝑒2 βˆ’ π‘’βˆš2 + 1. Then that means that
π‘‘πœˆ = (2𝑒 βˆ’ √2)𝑑𝑒 , which is precisely what we have earlier. (The constant can be factored
out.) That means that we have:
√2
(2𝑒 βˆ’ √2)
√2 π‘‘πœˆ √2
√2
∫ 4
𝑑𝑒 =
∫
=
𝑙𝑛|𝜈| + 𝐢3 =
𝑙𝑛|𝑒2 βˆ’ π‘’βˆš2 + 1| + 𝐢3
2
4
𝜈
4
4
𝑒 βˆ’ π‘’βˆš2 + 1
1
2
And for the second integral, we again use a trick to change ∫ 𝑒2 βˆ’π‘’βˆš2+1
𝑑𝑒 into something
more manageable. Following the steps from above, we see that:
1
√2
√2
2
∫
𝑑𝑒 =
∫
𝑑𝑒
2 (π‘’βˆš2 βˆ’ 1)2 + 1
𝑒2 βˆ’ π‘’βˆš2 + 1
Again, we use a substitution. Let 𝜈 = π‘’βˆš2 βˆ’ 1. Then that means that π‘‘πœˆ = √2𝑑𝑒. That means
that we have:
1
√2
2
∫
𝑑𝑒 =
π‘‘π‘Žπ‘›βˆ’1 (π‘’βˆš2 βˆ’ 1) + 𝐢4
2
2
𝑒 βˆ’ π‘’βˆš2 + 1
That means we have the following:
√2
√2
√2
2 𝑒
∫
𝑑𝑒 = ( 𝑙𝑛|𝑒2 βˆ’ π‘’βˆš2 + 1| + 𝐢3 ) + ( π‘‘π‘Žπ‘›βˆ’1(π‘’βˆš2 βˆ’ 1) + 𝐢4 )
4
2
𝑒2 βˆ’ π‘’βˆš2 + 1
And so, putting together everything from above, we see that:
∫ βˆšπ‘‘π‘Žπ‘› π‘₯ 𝑑π‘₯ = βˆ’ (βˆ’
√2
√2
𝑙𝑛|𝑒2 + π‘’βˆš2 + 1| + 𝐢1 ) + ( π‘‘π‘Žπ‘›βˆ’1 (π‘’βˆš2 + 1) + 𝐢2 ) +
4
2
√2
√2
+ ( 𝑙𝑛|𝑒2 βˆ’ π‘’βˆš2 + 1| + 𝐢3 ) + ( π‘‘π‘Žπ‘›βˆ’1 (π‘’βˆš2 βˆ’ 1) + 𝐢4 )
4
2
Now, we can simplify the above expression just a bit. We can factor
√2
2
out of all terms. Also, we
can use a property of logs to simplify the two natural log expressions. Doing so, we get the
following expression:
1
𝑒2 βˆ’ π‘’βˆš2 + 1
√2
βˆ’1
βˆ’1
∫ βˆšπ‘‘π‘Žπ‘› π‘₯ 𝑑π‘₯ =
(π‘‘π‘Žπ‘› (π‘’βˆš2 + 1) + π‘‘π‘Žπ‘› (π‘’βˆš2 βˆ’ 1) + 𝑙𝑛 |
|) + 𝐢
2
2
𝑒2 + π‘’βˆš2 + 1
Lastly, we replace u with its expression from the first page. Doing this, we get our final answer:
∫ βˆšπ‘‘π‘Žπ‘› π‘₯ 𝑑π‘₯ =
√2
(π‘‘π‘Žπ‘›βˆ’1(√2 π‘‘π‘Žπ‘› π‘₯
2
1
π‘‘π‘Žπ‘› π‘₯βˆ’βˆš2 π‘‘π‘Žπ‘› π‘₯+1
1
π‘‘π‘Žπ‘› xβˆ’βˆš2 tan x+1
+ 1) + π‘‘π‘Žπ‘›βˆ’1 (√2 π‘‘π‘Žπ‘› π‘₯ βˆ’ 1) + 2 𝑙𝑛 |π‘‘π‘Žπ‘› π‘₯+√2 π‘‘π‘Žπ‘› π‘₯+1|) + 𝐢,
where C is an arbitrary real constant.
Answer:
∫ βˆšπ‘‘π‘Žπ‘› π‘₯ 𝑑π‘₯ =
√2
(π‘‘π‘Žπ‘›βˆ’1(√2 π‘‘π‘Žπ‘› π‘₯
2
+ 1) + π‘‘π‘Žπ‘›βˆ’1 (√2 π‘‘π‘Žπ‘› π‘₯ βˆ’ 1) + 2 𝑙𝑛 | tan x+√2 tan x+1 |) + C.