Integration of squareroot tanx dx?
Solution:
ππ ππππ π‘π ππππ β« βtan x dx
First, we can make a u β substitution. Let u = βtan x. Then du =
sec2 xdx
2βtan x
dx
= 2 cos2 x
βtan x
.
Recall , cos2 x + sin2 x = 1. If we factor out a cos 2 x on the left side, we get (cos2 x)(1 +
tan2 x) = 1. Now we can rewrite the integral:
βtan x
β« βtan x dx = β«
dx
(cos 2 x)(1 + tan2 x)
Now, in integrand we multiply the nominator and the denominator by 2βtan x. After doing this,
we get:
2 tan x
β« βtan x dx = β«
dx
(2cos2 x)βtan x (1 + tan2 x)
2 tan x = 2u2 and 1 + tan2 x = 1 + u4 . If we rewrite the integrand in terms of variable u, we
get:
2u2
β« βtan x dx = β«
du
1 + u4
Then, we can factor 1 + u4 as:
1 + u4 = (u2 + uβ2 + 1)(u2 β uβ2 + 1);
Now we can rewrite the integral:
2u2
β« βtan x dx = β«
du
(u2 + uβ2 + 1)(u2 β uβ2 + 1)
Now, we have to use partial fractions:
2u2
Au + B
Cu + D
=
+
(u2 + uβ2 + 1)(u2 β uβ2 + 1) u2 + uβ2 + 1 u2 β uβ2 + 1
In the right side we reduce terms to a common denominator. Then we go through and equate
the coefficients of each power of u in the left side and in the right side so that we can solve
for A, B, C, and D.
2u2
(u2 + uβ2 + 1)(u2 β uβ2 + 1)
βΉ
2u2
(u2 + uβ2 + 1)(u2 β uβ2 + 1)
=
=
Au + B
u2 + uβ2 + 1
+
Cu + D
u2 β uβ2 + 1
(Au + B)(u2 β uβ2 + 1) + (Cu + D)(u2 + uβ2 + 1)
(u2 + uβ2 + 1)(u2 β uβ2 + 1)
βΉ 2u2 = (Au + B)(u2 β uβ2 + 1) + (Cu + D)(u2 + uβ2 + 1)
βΉ 2u2 = Au3 β Au2 β2 + Au + Bu2 β Buβ2 + B + Cu3 + Cu2 β2 + Cu + Du2 + Duβ2 + D
βΉ 2u2 = (A + C)u3 + (βAβ2 + B + Cβ2 + D)u2 + (A β Bβ2 + C + Dβ2)u + (B + D)
Equations derived from coefficients near similar terms:
A + C = 0(I)
βAβ2 + B + Cβ2 + D = 2 (II)
A β Bβ2 + C + Dβ2 = 0 (III)
B+D=0
(IV)
{
Equations (I) and (IV) tell us that C = βA and D = βB. Using that information, we replace the
expressions in equations (II) and (III). This gives us the following:
βAβ2 + B + (βA)β2 + (βB) = 2 βΉ A = β
β2
2
A β Bβ2 + (βA) + (βB)β2 = 0 βΉ B = 0
So, we see that C =
β2
and
2
D = 0. Now, we go back to our partial fractions and fill in A, B, C,
and D. Doing this, we have the following:
2
2u
(u2 + uβ2 + 1)(u2 β uβ2 + 1)
=
β2
β( 2 )u + 0
u2 + uβ2 + 1
+
β2
( 2 )u + 0
u2 β uβ2 + 1
=
β2
β2
β 2 u
2 u
=
+
u2 + uβ2 + 1 u2 β uβ2 + 1
Finally, returning to the original problem, we can rewrite the integral as follows:
β2
β2
u
u
2
2
β« βtan x dx = β«(
+
)du
u2 + uβ2 + 1 u2 β uβ2 + 1
Now, we can break β« βtan x dx into two different integrals. Also, we can rewrite the numerator
of both integrals. Doing so will allow us to continue our integrations.
β
Notice that
β2
u
2
=
β2
(2u
4
1
β β2) + 2 and likewise that β
β2
u
2
=β
β2
(2u
4
1
+ β2) + 2 . The
reason for this will become evident shortly. Here is the first part of the integration, broken into
two separate pieces.
β
β2
u
2
β« u2 +uβ2+1 du = β«
β2
(2u+β2)
4
u2 +uβ2+1
β
1
2
du + β« u2 +uβ2+1 du
Now, let us consider the first of these two integrals: β«
β2
(2u+β2)
4
u2 +uβ2+1
β
du
Here, the substitution is actually straightforward because of the above work. Let Ξ½ = u2 +
+uβ2 + 1. Then that means that dΞ½ = (2u + β2)du, which is precisely what we have above.
(The constant can be factored out.) That means that we have:
β«
β2
(2u+β2)
4
u2 +uβ2+1
β
du = β
β2 dΞ½
β«Ξ½
4
=β
β2
ln|Ξ½|
4
+ C1 = β
β2
ln|u2
4
+ uβ2 + 1| + C1
1
2
Second integral: β« u2 +uβ2+1
du
1
1
1
1
2
=
=
=
=
u2 + uβ2 + 1 2(u2 + uβ2 + 1) 2u2 + 2uβ2 + 2 2u2 + 2uβ2 + 1 + 1
=
1
2
(uβ2 + 1) + 1
=
1
β2
β
2
β2 (uβ2 + 1) + 1
=
β2
β2
β
2 (uβ2 + 1)2 + 1
That means that we have the following:
1
β2
β2
2
β«
ππ’ =
β«
ππ’
2 (π’β2 + 1)2 + 1
π’2 + π’β2 + 1
We can finally integrate further, if we use another substitution. Let π = π’β2 + 1, then
ππ = β2ππ’ . Using that substitution, we have:
β2
β2
ππ’
β«
2
2
(π’β2+1) +1
=
ππ β2
β2
β« π2 +1= 2 π‘ππβ1 π£
2
+ πΆ2 .
Evaluating this, we have
1
β2
2
β«
ππ’ =
π‘ππβ1 (π’β2 + 1) + πΆ2
2
2
π’ + π’β2 + 1
Putting this all together, we have done half of the integration. So far, we have shown:
β2
β 2 π’
β2
β2
β«
= β (β
ππ|π’2 + π’β2 + 1| + πΆ1 ) + ( π‘ππβ1(π’β2 + 1) + πΆ2 )
4
2
π’2 + π’β2 + 1
β2
π’
2
β2
π’
2
Now, thankfully, something similar happens for β« π’2 βπ’β2+1 ππ’.We rewrite β« π’2 βπ’β2+1 ππ’
β2
(2π’ββ2)
1
2
as β« π’42 βπ’β2+1 ππ’ + β« π’2 βπ’β2+1
ππ’.
For the first integral, we again use a substitution. Let π = π’2 β π’β2 + 1. Then that means that
ππ = (2π’ β β2)ππ’ , which is precisely what we have earlier. (The constant can be factored
out.) That means that we have:
β2
(2π’ β β2)
β2 ππ β2
β2
β« 4
ππ’ =
β«
=
ππ|π| + πΆ3 =
ππ|π’2 β π’β2 + 1| + πΆ3
2
4
π
4
4
π’ β π’β2 + 1
1
2
And for the second integral, we again use a trick to change β« π’2 βπ’β2+1
ππ’ into something
more manageable. Following the steps from above, we see that:
1
β2
β2
2
β«
ππ’ =
β«
ππ’
2 (π’β2 β 1)2 + 1
π’2 β π’β2 + 1
Again, we use a substitution. Let π = π’β2 β 1. Then that means that ππ = β2ππ’. That means
that we have:
1
β2
2
β«
ππ’ =
π‘ππβ1 (π’β2 β 1) + πΆ4
2
2
π’ β π’β2 + 1
That means we have the following:
β2
β2
β2
2 π’
β«
ππ’ = ( ππ|π’2 β π’β2 + 1| + πΆ3 ) + ( π‘ππβ1(π’β2 β 1) + πΆ4 )
4
2
π’2 β π’β2 + 1
And so, putting together everything from above, we see that:
β« βπ‘ππ π₯ ππ₯ = β (β
β2
β2
ππ|π’2 + π’β2 + 1| + πΆ1 ) + ( π‘ππβ1 (π’β2 + 1) + πΆ2 ) +
4
2
β2
β2
+ ( ππ|π’2 β π’β2 + 1| + πΆ3 ) + ( π‘ππβ1 (π’β2 β 1) + πΆ4 )
4
2
Now, we can simplify the above expression just a bit. We can factor
β2
2
out of all terms. Also, we
can use a property of logs to simplify the two natural log expressions. Doing so, we get the
following expression:
1
π’2 β π’β2 + 1
β2
β1
β1
β« βπ‘ππ π₯ ππ₯ =
(π‘ππ (π’β2 + 1) + π‘ππ (π’β2 β 1) + ππ |
|) + πΆ
2
2
π’2 + π’β2 + 1
Lastly, we replace u with its expression from the first page. Doing this, we get our final answer:
β« βπ‘ππ π₯ ππ₯ =
β2
(π‘ππβ1(β2 π‘ππ π₯
2
1
π‘ππ π₯ββ2 π‘ππ π₯+1
1
π‘ππ xββ2 tan x+1
+ 1) + π‘ππβ1 (β2 π‘ππ π₯ β 1) + 2 ππ |π‘ππ π₯+β2 π‘ππ π₯+1|) + πΆ,
where C is an arbitrary real constant.
Answer:
β« βπ‘ππ π₯ ππ₯ =
β2
(π‘ππβ1(β2 π‘ππ π₯
2
+ 1) + π‘ππβ1 (β2 π‘ππ π₯ β 1) + 2 ππ | tan x+β2 tan x+1 |) + C.
© Copyright 2026 Paperzz