Homework 7-9 Solution 1250 EX: Use either the node-voltage method or superposition to find the phasor voltage V1. SOL'N: i) Node-voltage method solution: We have one node equation. We sum up the three currents, iA1, iA2, and iA3, flowing out of the top node, written in terms of phasors and impedances. V − 6e− j 45° V VA − 12e j 45° V −3e−90° mA + A + = 0A j5 kΩ − j10 kΩ We do the algebra, as always, by grouping the terms that multiply the node voltage and putting constant terms on the right side. ⎛ 1 ⎞ 1 6e− j 45° V 12e j 45° V −90° VA ⎜ + = 3e mA + + j5 kΩ − j10 kΩ ⎝ j5 kΩ − j10 kΩ ⎟⎠ or ⎛ 1 ⎞ −2 1 6e− j 45° mA 12e j 45° mA −90° VA ⎜ ⋅ + = 3e mA + + j5 Ω − j10 Ω ⎝ j5 kΩ −2 − j10 kΩ ⎟⎠ or ⎛ −2 ⎞ 1 6e− j 45° mA − j 12e j 45° mA j −90° VA ⎜ + = 3e mA + ⋅ + ⋅ j5 Ω −j − j10 Ω j ⎝ − j10 kΩ − j10 kΩ ⎟⎠ or ⎛ ⎞ 1 − j6e− j 45° mA j12e j 45° mA −90° VA ⎜ − = 3e mA + + 5Ω 10 Ω ⎝ − j10 kΩ ⎟⎠ We convert to rectangular form for the addition. e− j 45° = 2 2 −j 2 2 2 2 +j and e j 45° = and e− j90° = − j 2 2 We continue: ⎛ 1 ⎞ − j6( 2 − j 2 ) j12( 2 + j 2 ) VA ⎜ = − j3 + + mA ⎟ (2)5 Ω (2)10 Ω ⎝ j10 kΩ ⎠ or ⎡ − j6( 2 − j 2 ) j12( 2 + j 2 ) ⎤ VA = ⎢ − j3 + + ⎥ j10 kΩ ⋅ mA (2)5 Ω (2)10 Ω ⎣ ⎦ or VA = ⎡⎣ 30 + 6( 2 − j 2 ) − 6( 2 + j 2 ) ⎤⎦ V or VA = ⎡⎣ 30 − j12 2 ⎤⎦ V Now we calculate V1 from VA. ⎡ ⎛ 2 + j 2⎞⎤ V1 = VA − 12e j 45° V = ⎢ 30 − j12 2 − 12 ⋅ ⎜ ⎟⎠ ⎥ V 2 ⎝ ⎢⎣ ⎥⎦ or V1 = VA − 12e j 45° V = ⎡⎣ 30 − 6 2 − j18 2 ⎤⎦ V or V1 ! 21.5 − j24.5V or V1 = ( 30 − 6 2 ) + (18 2 ) e 2 2 ⎛ −18 2 ⎞ tan −1⎜ ⎝ 30−6 2 ⎟⎠ V ! 33.3e − j 49.8° V ii) Superposition solution: case I: Only the current source on the left is turned on. Voltage V11 is the same as the voltage across the entire equivalent impedance of j5 kΩΩ in parallel with -j10kΩΩ. V11 = IzEq = 3e− j90° mA ⋅ j5 kΩ || − j10 kΩ or V11 = 3e− j90° mA ⋅ 5 kΩ ⋅ j || − j2 = 15e− j90° ⋅ j(− j2) V j − j2 or V11 = 15e− j90° ⋅ 2 V = 30V −j Note that e–j90° = –j. case II: Only the middle voltage source is turned on. This is a voltage divider. V12 = 6e− j 45° V − j10 kΩ −2 = 6e− j 45° V j5 kΩ − j10 kΩ 1− 2 or V12 = 6e− j 45° V(2) = 12e− j 45° V or V12 = 12 2(1− j) V = 6 2(1− j)V 2 case III: Only the right voltage source is turned on. This is also a voltage divider. We have to add a minus sign in the voltage-divider formula, however, since the polarity of the voltage measurement is inverted compared to the standard voltage divider. − j10 kΩ −2 V13 = −12e j 45° V = −12e j 45° V j5 kΩ − j10 kΩ 1− 2 or V13 = −12e j 45° V(2) = −24e j 45° V or V13 = −24 2(1+ j) V = −12 2(1+ j)V 2 Now we sum the results V1 = 30V + 6 2(1− j)V − 12 2(1+ j)V or V1 = ⎡⎣ 30 − 6 2 − j18 2 ⎤⎦ V This matches the result from the node-voltage method, which it must.
© Copyright 2026 Paperzz