DATE NAME 9-4 Student Edition Pages 514–519 Study Guide Polynomials A polynomial is a monomial or a sum of monomials. A binomial is the sum of two monomials, and a trinomial is the sum of three monomials. The degree of a monomial is the sum of the exponents of its variables. Examples of each type of polynomial are given in the following chart. Monomial Binomial Trinomial Monomial Degree 5x 4 abc 3x 1 2 4 x 1 5y 5x 2 2x 1 7 a 2 1 2ab 1 b 2 5x 4ab 3c 4 2 1131458 2 2 2 To find the degree of a polynomial, first find the degree of each of its terms. The degree of the polynomial is the greatest of the degrees of its terms. The terms of a polynomial are usually arranged so that the powers of one variable are in either ascending or descending order. Ascending Order: 3 1 5a 2 8a2 1 a3 Descending Order: (in x) x 5 y2 2 x 4 1 x 3 y2 1 5xy Find the degree of each polynomial. 1. 4x 2 y 3 z 2. 22abc 3. 15m 4. s 1 5t 5. 22 6. 18x 2 y 1 4yz 2 10y 7. x4 2 6x 2 2 2x 3 2 10 8. 2x 3 y 2 2 4xy 3 9. 22r 8 s 4 1 7r 2 s 2 4r 7 s 6 Arrange the terms of each polynomial so that the powers of x are in descending order. 10. 24x 2 y 2 12x 3 y 2 1 6x 4 11. 20x 2 10x 2 1 5x 3 12. 9bx 1 3bx 2 2 6x 3 13. 215x 3 1 10x 4 y 2 1 7xy 2 14. ax 2 1 8a 2 x 5 2 4 15. x5 1 x2 2 x3 Arrange the terms of each polynomial so that the powers of x are in ascending order. 16. x4 1 x3 1 x2 17. 2x3 2 x 1 3x7 18. 25cx 1 10c 2 x 3 1 15cx 2 19. 3 1 9x 4 1 9x 3 20. 24nx 2 5n 3 x 3 1 5 21. 4xy 1 2y 1 5x 2 © Glencoe/McGraw-Hill 64 Algebra 1 9-4 DATE NAME Student Edition Pages 514–519 Practice Polynomials Find the degree of each polynomial. 1. 5a 2 2b2 1 1 2. 4a3 2 2a 3. x 1 3x4 2 21x2 1 x3 4. b 1 6 5. 24xy 2 xy3 1 x2 6. n3 1 m2 1 n2m2 7. 32r4 8. 8x2 2 2x8 9. 22x2y 1 3xy3 1 x3 10. 10s2t2 1 4st2 2 5s3t2 Arrange the terms of each polynomial so that the powers of x are in ascending order. 11. 5 1 2x2 1 x4 1 3x3 12. 3x 1 1 1 2x2 13. 5x 2 6 1 3x2 14. 9x2 1 2 1 x3 1 x 15. 23 1 3x3 2 x2 1 4x 16. x2 1 x4 2 2x 2 x3 17. 6x2 1 6 1 x3 1 12x 18. 7r5x 1 21r4 2 r2x2 2 15x3 Arrange the terms of each polynomial so that the powers of x are in descending order. 19. x 2 3x2 1 4 1 5x3 20. 1 2 x 1 x2 2 x3 21. x2 1 3x3 1 27 2 x 22. x 1 3x3 2 17 1 x2 23. x 2 1 1 x3 24. x2 1 64 2 x 1 3x3 25. 25 2 x3 1 x 26. 5p 1 p3x2 1 px 1 3 px3 © Glencoe/McGraw-Hill 1 64 Algebra 1
© Copyright 2026 Paperzz