Carbon Bonding Jean Brainard, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-12 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook® textbooks). Copyright © 2016 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), which is incorporated herein by this reference. Complete terms can be found at http://www.ck12.org/about/ terms-of-use. Printed: August 25, 2016 AUTHOR Jean Brainard, Ph.D. www.ck12.org C HAPTER Chapter 1. Carbon Bonding 1 Carbon Bonding • Explain why carbon is found in most compounds. • Describe how carbon forms bonds. Spiral structures like the one pictured here could replace batteries in the future because they can store energy like a spring and conduct electricity. The structure is a tiny nanotube that consists entirely of carbon atoms. Carbon nanotubes are made in labs, but carbon-based compounds are also the most common naturally occurring compounds on Earth. More than 90 percent of all known compounds contain carbon. Do you know why carbon is found in so many compounds? Read on to find out. Carbon, Carbon Everywhere Carbon is a very common “ingredient” of matter because it can combine with itself and with many other elements. It can form a great diversity of compounds, ranging in size from just a few atoms to thousands of atoms. There are millions of known carbon compounds, and carbon is the only element that can form so many different compounds. Valence Electrons in Carbon Carbon is a nonmetal in group 14 of the periodic table. Like other group 14 elements, carbon has four valence electrons. Valence electrons are the electrons in the outer energy level of an atom that are involved in chemical bonds. The valence electrons of carbon are shown in the electron dot diagram in the Figure 1.1. Q: How many more electrons does carbon need to have a full outer energy level? A: Carbon needs four more valence electrons, or a total of eight valence electrons, to fill its outer energy level. A full outer energy level is the most stable arrangement of electrons. 1 www.ck12.org FIGURE 1.1 Q: How can carbon achieve a full outer energy level? A: Carbon can form four covalent bonds. Covalent bonds are chemical bonds that form between nonmetals. In a covalent bond, two atoms share a pair of electrons. By forming four covalent bonds, carbon shares four pairs of electrons, thus filling its outer energy level and achieving stability. How Carbon Forms Bonds A carbon atom can form covalent bonds with other carbon atoms or with the atoms of other elements. Carbon often forms bonds with hydrogen. Compounds that contain only carbon and hydrogen are called hydrocarbons. Methane (CH4 ), which is modeled in the Figure 1.2, is an example of a hydrocarbon. In methane, a single carbon atom forms covalent bonds with four hydrogen atoms. The diagram on the left in the Figure 1.2 shows all the shared valence electrons. The diagram on the right in the Figure 1.2, called a structural formula, represents each pair of shared electrons with a dash (-). FIGURE 1.2 Methane (CH4 ) Carbon-Carbon Bonds Carbon can form single, double, or even triple bonds with other carbon atoms. In a single bond, two carbon atoms share one pair of electrons. In a double bond, they share two pairs of electrons, and in a triple bond they share three pairs of electrons. Examples of compounds with these types of bonds are represented by the structural formulas in the Figure 1.3. Q: How many bonds do the carbon atoms share in each of these compounds? 2 www.ck12.org Chapter 1. Carbon Bonding FIGURE 1.3 A: In ethane, the two carbon atoms share a single bond. In ethene they share a double bond, and in ethyne they share a triple bond. Summary • Carbon forms covalent bonds with atoms of carbon or other elements. There is a great diversity of carbon compounds, ranging in size from just one to thousands of atoms. • Carbon has four valence electrons, so it can achieve a full outer energy level by forming four covalent bonds. When it bonds only with hydrogen, it forms compounds called hydrocarbons. • Carbon can form single, double, or triple covalent bonds with other carbon atoms. Review 1. What type of bonds do carbon atoms form? 2. How are carbon’s valence electrons related to the bonds it forms? 3. What are single, double, and triple carbon bonds? Resources MEDIA Click image to the left or use the URL below. URL: https://www.ck12.org/flx/render/embeddedobject/170752 MEDIA Click image to the left or use the URL below. URL: https://www.ck12.org/flx/render/embeddedobject/170754 3 www.ck12.org References 1. Christopher Auyeung. Valence shell of carbon . CC BY-NC 3.0 2. Christopher Auyeung. Structural formula of methane . CC BY-NC 3.0 3. Jodi So. Carbon-carbon bonds with different bond orders . CC BY-NC 3.0 4
© Copyright 2025 Paperzz