01-02

Sec 1.2 –Revisiting Quadratics
(Review) Simplifying Radicals
PRODUCT RULE:
π‘Ž
π‘Ž
Name:
QUOTIENT RULE:
π‘Ž
√π‘₯
βˆšπ‘¦
π‘Ž
π‘₯
π‘Ž
√π‘₯ βˆ™ βˆšπ‘¦ = √π‘₯𝑦
π‘Ž
= √
𝑦
Example:
Example:
√10 βˆ™ √π‘₯ = √10π‘₯
√10
√2
=√
10
2
= √5
More directly, when determining a product or quotient of radicals and the indices (the small number in front
of the radical) are the same then you can rewrite 2 radicals as 1 or 1 radical as 2.
Simplify by rewriting the following using only one radical sign (i.e. rewriting 2 radicals as 1).
1.
3
√7π‘₯ βˆ™ √2𝑦
2.
√12π‘₯ 2
3
√4π‘₯
Simplify by rewriting the following using multiple radical sign (i.e. rewriting 1 radical as 2).
π‘₯6
144
4. √121
3. √ 25
Express each radical in simplified form.
5. √48
6.
√450π‘₯ 4 𝑦 5
M. Winking
7.
Unit 1-2 page 3
3
√48π‘Ž7 𝑏 3
Express each radical in simplified form.
4
8. √80π‘Ž10 𝑏3
9.
βˆ’βˆš675π‘š4 𝑛11 𝑝5
3
10. βˆšβˆ’27π‘₯ 5
12. √12π‘Ž3 𝑏 5 βˆ™ √6π‘Žπ‘ 2
11. √6π‘₯ βˆ™ √12π‘₯
Simplify. Assume that all variable represent positive real numbers.
13. 5√3 + √2 βˆ’ 2√3 + 4√2
3
3
3
16. √16 βˆ’ √108 + 2 √54
14.
108  5 12 ο€­ 4 44
17. 5 18 x
4
ο€­ 3x 8 x 2 ο€­ x 2 2
M. Winking
Unit 1-2 page 4
15. 2 12 
3
18  2 3 ο€­ 3 8
3
18. 3√24π‘₯ 4 + 2π‘₯ √3π‘₯
Simplify. Assume that all variable represent positive real numbers.
19. 2√6 (3√2 βˆ’ 5√3)
20. 3√2 (√6 + √12 βˆ’ 2√3)
3
21. 2√2π‘₯ (√12π‘₯ βˆ’ 4√6π‘₯ 3 + 3√3π‘₯)
3
3
22. √12 (4 √2 βˆ’ 3 √9)
23. Consider the following rectangles.
√6π‘₯ 3
2√6
2√10 + √6
a. Determine the Perimeter of the Rectangle.
√2π‘₯ 2 + 3√6π‘₯
a. Determine the Perimeter of the Rectangle.
b. Determine the Area of the Rectangle.
b. Determine the Area of the Rectangle.
M. Winking
Unit 1-2 page 5
Simplify. Assume that all variable represent positive real numbers and rationalize all denominators.
24.
27.
30.
3
25.
√5
12
2√6
6
√3
26.
16
27
28. √
√2(√12βˆ’βˆš3)
√3
29.
3π‘₯√2
√6π‘₯
31. 2
32.
M. Winking
Unit 1-2 page 6
3√2
√6
12  8 3 ο€­ 2 27
2
√6
√2π‘₯ 3