Sec 1.2 βRevisiting Quadratics (Review) Simplifying Radicals PRODUCT RULE: π π Name: QUOTIENT RULE: π βπ₯ βπ¦ π π₯ π βπ₯ β βπ¦ = βπ₯π¦ π = β π¦ Example: Example: β10 β βπ₯ = β10π₯ β10 β2 =β 10 2 = β5 More directly, when determining a product or quotient of radicals and the indices (the small number in front of the radical) are the same then you can rewrite 2 radicals as 1 or 1 radical as 2. Simplify by rewriting the following using only one radical sign (i.e. rewriting 2 radicals as 1). 1. 3 β7π₯ β β2π¦ 2. β12π₯ 2 3 β4π₯ Simplify by rewriting the following using multiple radical sign (i.e. rewriting 1 radical as 2). π₯6 144 4. β121 3. β 25 Express each radical in simplified form. 5. β48 6. β450π₯ 4 π¦ 5 M. Winking 7. Unit 1-2 page 3 3 β48π7 π 3 Express each radical in simplified form. 4 8. β80π10 π3 9. ββ675π4 π11 π5 3 10. ββ27π₯ 5 12. β12π3 π 5 β β6ππ 2 11. β6π₯ β β12π₯ Simplify. Assume that all variable represent positive real numbers. 13. 5β3 + β2 β 2β3 + 4β2 3 3 3 16. β16 β β108 + 2 β54 14. 108 ο« 5 12 ο 4 44 17. 5 18 x 4 ο 3x 8 x 2 ο x 2 2 M. Winking Unit 1-2 page 4 15. 2 12 ο« 3 18 ο« 2 3 ο 3 8 3 18. 3β24π₯ 4 + 2π₯ β3π₯ Simplify. Assume that all variable represent positive real numbers. 19. 2β6 (3β2 β 5β3) 20. 3β2 (β6 + β12 β 2β3) 3 21. 2β2π₯ (β12π₯ β 4β6π₯ 3 + 3β3π₯) 3 3 22. β12 (4 β2 β 3 β9) 23. Consider the following rectangles. β6π₯ 3 2β6 2β10 + β6 a. Determine the Perimeter of the Rectangle. β2π₯ 2 + 3β6π₯ a. Determine the Perimeter of the Rectangle. b. Determine the Area of the Rectangle. b. Determine the Area of the Rectangle. M. Winking Unit 1-2 page 5 Simplify. Assume that all variable represent positive real numbers and rationalize all denominators. 24. 27. 30. 3 25. β5 12 2β6 6 β3 26. 16 27 28. β β2(β12ββ3) β3 29. 3π₯β2 β6π₯ 31. 2 32. M. Winking Unit 1-2 page 6 3β2 β6 12 ο« 8 3 ο 2 27 2 β6 β2π₯ 3
© Copyright 2026 Paperzz