NAME:____________________________ Spring 2006 INSTRUCTIONS: 1. Student Number:______________________ Chemistry 1000 Test #3 ____/ 50 marks 1) Please read over the test carefully before beginning. You should have 7 pages of questions, and a formula/periodic table sheet (8 pages total). The question on page 7 is a bonus question. 2) If your work is not legible, it will be given a mark of zero. 3) Marks will be deducted for improper use of significant figures and for missing or incorrect units. 4) Show your work for all calculations. Answers without supporting calculations will not be given full credit. 5) You may use a calculator. 6) You have 50 minutes to complete this test. Complete the following table. [5 marks] Molecular Formula Name (NH4)2SO4 ammonium sulfate CoF2·4H2O cobalt(II) fluoride tetrahydrate Ca(OCl)2 calcium hypochlorite P2O5 diphosphorus pentoxide (or diphosphorus pentaoxide) NiS nickel(II) sulfide 2. Balance each of the following reaction equations: (a) ____La2O3 + __3__H2O → __2__La(OH)3 (b) ____PCl5 → ____H3PO4 + __5__HCl (c) __4__CH3NH2 + __9__O2 + __4__H2O → __4__CO 1 [3 marks] 2 + __10__H2O + __2__N2 NAME:____________________________ 3. Student Number:______________________ DNA consists of three types of molecules connected together. The “coding” molecules are called nitrogenous bases (because they are bases that contain nitrogen). The molecule shown below is adenine, one of the four nitrogenous bases in DNA. [5 marks] sp3 H .. H N sp2 .. C N C C C N C H N H N H sp2 (a) Name the hybrid orbital set used by each of the three atoms in bold. (b) How many σ bonds are there in one molecule of adenine? 16 (16 bonds of any type) (c) How many π bonds are there in one molecule of adenine? 4 (4 double bonds; 0 triple bonds) 4. Use diagram(s) to explain how sp orbitals are formed. Clearly indicate the number, type and geometry of all orbitals involved. [4 marks] An s orbital and a p orbital in the same shell of the same atom combine to make two sp orbitals: 2 NAME:____________________________ 5. Student Number:______________________ Consider the cyanide anion (CN-) according to valence bond theory. Draw both the atomic orbitals involved in bonding and the bonding molecular orbitals formed. Label each atomic orbital and each molecular orbital. [10 marks] (Please use a different picture for each molecular orbital. Clearly indicate if any of the pictures are looking at the molecule from a different angle than the others.) atomic orbital(s) molecular orbital(s) 3 NAME:____________________________ 6. (a) Student Number:______________________ An unknown solid is found to contain 52.26% Fe, 44.91% O and 2.83% H by mass. [6 marks] Calculate the empirical formula for this unknown solid. (b) Assuming that the empirical and molecular formulae are the same, name the unknown solid. (a) 100 g of unknown molecule contains 52.26 g Fe, 44.91 g O and 2.83 g H. nFe = mFe MFe = nO = mO MO (52.26 g) . (55.845 g/mol) nFe = 0.9358 mol (b) = nH = mH MH (44.91 g) . (15.9994 g/mol) nO = 2.807 mol (2.83 g) . 1.00079 g/mol nH = 2.81 mol Therefore, nFe : nO : nH = 0.9358 mol Fe : 2.807 mol O : 2.81 mol H 0.9358 0.9358 0.9358 nFe : nO : nH = 1.000 mol Fe : 3.000 mol O : 3.00 mol H Therefore, the empirical formula is FeO3H3 FeO3H3 = Fe(OH)3 = iron(III) hydroxide 4 NAME:____________________________ 7. Student Number:______________________ An impure sample (1.25 g) of sodium chloride was dissolved in 25.00 mL of water. Silver(I) nitrate solution was then added until no more precipitate formed. The precipitate was found to be 1.25 g of pure silver(I) chloride. Calculate the purity (in percent-by-mass) of the initial sodium chloride sample. [6 marks] NaCl(aq) + AgNO3(aq) → AgCl(s) + NaNO3(aq) Step 1: Calculate the number of moles of AgCl produced. nAgCl = 1.25 g AgCl = 0.00872 mol AgCl 143.3207 g/mol Step 2: Calculate the number of moles of NaCl consumed. nNaCl = 0.00872 mol AgCl × 1 mol NaCl = 0.00872 mol NaCl 1 mol AgCl Step 3: Calculate the mass of pure NaCl (i.e. the mass of NaCl consumed) in the initial sample. mNaCl = 0.00872 mol NaCl × 58.4425 g/mol = 0.510 g NaCl Step 4: Calculate the purity of the initial (impure) sample of NaCl. % mass = mNaCl × 100% = 0.510 g × 100% = 40.8 % mimpure 1.25 g 5 NAME:____________________________ Student Number:______________________ 8. Copper metal (Cu) reacts with concentrated nitric acid (15 M HNO3) to produce copper(II) nitrate, water and nitrogen dioxide gas. [11 marks] (a) Write a balanced chemical equation for this reaction. (b) What mass of nitrogen dioxide will be produced when 6.3546 g of copper is reacted with 25.00 mL of concentrated nitric acid? (a) Cu + 4 HNO3 (b) *Only round when you get to the final answer. I’m showing rounded values to let you know where the sig. fig. come from, but I’m carrying through all digits in my calculator.* → Cu(NO3)2 + 2 H2O + 2 NO2 Step 1: Calculate the moles of each reactant and identify the limiting reagent. nCu = 6.3546 g Cu = 0.10000 mol Cu 63.546 g/mol nHNO3 = 15 mol/L × 0.02500 L = 0.38 mol HNO3 n*Cu = 0.10000 mol Cu = 0.10000 mol Cu 1 n*HNO3 = 0.38 mol HNO3 = 0.094 mol HNO3 4 ∴ HNO3 is the limiting reagent Step 2: Calculate the moles of NO2 produced. nNO2 = 0.38 mol HNO3 × 2 mol NO2 = 0.19 mol NO2 4 mol HNO3 Step 3: Calculate the mass of NO2 produced. mNO2 = 0.19 mol NO2 × 46.0055 g/mol = 8.6 g NO2 6 NAME:____________________________ Student Number:______________________ BONUS QUESTION (+1 to your final “number grade” in the course; equivalent to 5 marks on this test) The central C–C bond in butane (CH3CH2CH2CH3) is longer than the central C–C bond in butadiene (CH2CHCHCH2). Use molecular orbital theory to explain why this is the case. 7 Fundamental Constants and Conversion Factors Atomic mass unit 1.6605 × 10-24 g Avogadro's number 6.02214 × 1023 mol–1 Bohr radius 5.29177 × 10-11 m Coulomb constant 8.998 × 109 N·m2·C-2 Electron charge (e) 1.6022 × 10-19 C Electron mass 5.4688 × 10-4 µ 6.626 × 10-34 J·s 1.0072765 µ 1.0086649 µ 1.097 x 107 m-1 2.179 x 10-18 J 2.9979 x 108 m·s-1 Planck's constant Proton mass Neutron mass Rydberg Constant (R) Rydberg unit (Ry) Speed of light in vacuum Formulae v = υλ (often, c = υ λ ) d = m V E = hυ U = m n 2 rn = a 0 n Z F = k λ = h ρ ∆x . ∆ρ > En = -1 Ry 1 (n+e)(n-e) d2 ρ = mv Z2 n2 E = k (n+e)(n-e) d = R 1 - 1 n12 n22 1 h 4π λ 1 - 1 n 22 n12 ∆E = En2 - En1 = Ry . Z 2 Chem 1000 Standard Periodic Table 18 4.0026 1.0079 H He 2 13 14 15 16 17 6.941 9.0122 10.811 12.011 14.0067 15.9994 18.9984 Li Be B C N O F Ne 3 22.9898 4 24.3050 5 26.9815 6 28.0855 7 30.9738 8 32.066 9 35.4527 10 39.948 1 2 20.1797 Na Mg 11 39.0983 12 40.078 3 4 5 6 7 8 9 10 11 12 44.9559 47.88 50.9415 51.9961 54.9380 55.847 58.9332 58.693 63.546 65.39 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 19 85.4678 20 87.62 21 88.9059 22 91.224 23 92.9064 24 95.94 26 101.07 27 102.906 28 106.42 29 107.868 30 112.411 31 114.82 32 118.710 33 121.757 34 127.60 35 126.905 36 131.29 Rb Sr 37 132.905 38 137.327 Cs Ba 55 (223) 56 226.025 Fr 87 Ra Y 39 La-Lu Ac-Lr 88 P S Cl Ar 15 74.9216 16 78.96 17 79.904 18 83.80 Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 41 180.948 42 183.85 43 186.207 44 190.2 45 192.22 46 195.08 47 196.967 48 200.59 49 204.383 50 207.19 51 208.980 52 (210) 53 (210) 54 (222) Hf Ta W Re Os Ir Pt Au 72 (261) 73 (262) 74 (263) 75 (262) 76 (265) 77 (266) 78 (281) 79 (283) Rf Db Sg 105 106 138.906 140.115 140.908 144.24 La Ce Pr Nd 57 227.028 58 232.038 59 231.036 60 238.029 Ac Si 14 72.61 40 178.49 104 89 25 (98) Al 13 69.723 Th 90 Pa 91 U 92 Bh 107 Hs Mt Dt Hg Tl Pb Bi Po At 80 81 82 83 84 85 174.967 Rg 108 109 110 111 (145) 150.36 151.965 157.25 158.925 162.50 164.930 167.26 168.934 173.04 Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 61 237.048 62 (240) 63 (243) 64 (247) 65 (247) 66 (251) 67 (252) 68 (257) 69 (258) 70 (259) 71 (260) Np 93 Pu 94 Am Cm 95 96 Rn 86 Bk 97 Cf 98 Es 99 Fm 100 Md 101 No 102 Lr 103 Developed by Prof. R. T. Boeré 8
© Copyright 2026 Paperzz