W10D1 Exponents Warm Up 1. Simplify 52 2. Simplify 23 3. Simplify x · x · x 4. Simplify 3x + 2x2 + x + 6x2 Lesson 22 Exponent Properties Multiply and Divide When in doubt, expand it out. When terms are multiplied add the exponents. When terms are divided subtract the exponents. Follow the standard arithmetic rules for coefficients. EX 1: (3xy)(−2x)(y 2 ) EX 2: 20x3 y 10 8x8 y 7 −6x2 y 3 5y 3 2x5 Power to Power When in doubt, expand it out. When a power is raised to another power, multiply the exponents. EX 3: 10x5 y 9 6x12 y 3 5 55 y 30 35 x35 Zero and Negative Exponent 5 =1 5 x3 = x3−3 = x0 x3 x0 = 1 Anything to the 0 exponent is 1 EX 4: Simplify 4x0 y 3 = 4y 3 vs 4(xy 3 )0 = 4 x2 = x2−6 = x−4 x6 x3 x·x·x 1 Expand it out: 9 = = 6 = x−6 x x·x·x·x·x·x·x·x·x x EX 5: Subtracting exponents: Always write final answers with only positive exponents. When you have a negative exponent it will ”move” from the numerator to the denominator or from the denominator to the numerator. EX 6: EX 7: 6x2 y 3 3y 2 = not 3y 2 x−5 2x10 y 4x5 x−5 y 3 y6 Simplify 6 −3 = 11 2x y 2x Simplify Practice Problems 1. (2ab−3 )−2 (2a−1 b)−4 2. (xy −1 · 2x−4 y −3 )2 4 2mn4 2m3 3. (7n3 )2 (2x2 y 2 )3 · x2 y −1 · 2x2 y 4. (2x3 y −2 )3 (x−4 y 3 )−4 · 2x−3 y 0 5. 2y −4 Answers a2 b 2 26 4 2. 8 6 y x 28 m16 3. 8 8 7n 1. 4. 2xy 12 x13 5. 8 y Extra Practice Work 6. (4xy 5 )(2x2 y 3 ) 8x3 y 8 7. 3x2 + 5x2 8x2 8. 4x3 y 8 x5 y 4y 7 x2 9. 9x10 y 3 3x5 y 7 3x5 y4 10. (6x2 )(5x3 ) 30x5 11. 7x5 − 2x5 5x5 12. (−4a2 b3 )(6a4 b2 ) −24a6 b5 13. 8y 3 + 2y 4 8y 3 + 2y 4 14. y7 y2 y5 15. x5 y 8 xy 3 x4 y 5 16. x4 y 3 xy 9 x3 y6 17. x6 y 2 xy 2 x5 Power to Power When in doubt, expand it out. When a power is raised to another power, multiply the exponents. (33 )4 = (3 · 3 · 3)4 = (3 · 3 · 3)(3 · 3 · 3)(3 · 3 · 3)(3 · 3 · 3) 312 (3x2 )(3x2 )(3x2 ) = 33 x6 = 27x6 (3x2 )3 (2g 5 h3 )(2g 5 h3 )(2g 5 h3 )(2g 5 h3 ) 24 g 20 h12 1. (−3a6 b5 )2 2 x5 y 2x6 y 3 x4 y 7 2. 3. 9x12 y 10 x10 y2 4 16x8 y 20 2 −5x3 y xy 4 6 5 3 3x y 12xy 8 25x4 y6 4. 5. x15 81y 9 6. (4x2 y 5 )3 7. x3 y 2 y4 64x6 y 15 2 x6 y4 (x5 y 2 )4 x20 y 8 (5x3 y 2 )(5x3 y 2 ) 25x6 y 4 = (5x3 y 2 )2 (3y 4 )2 9y 6 (5x3 y 6 )3 125x9 y 19 Zero and Negative Exponent 5 x3 EX 1: =1 = x3−3 = x0 5 x3 x0 = 1 Anything to the 0 exponent is 1 EX 2: Simplify 4x0 y 3 = 4y 3 vs 4(xy 3 )0 = 4 EX 3: Subtracting exponents: x2 = x2−6 = x−4 x6 Expand it out: x3 1 x·x·x = 6 = x−6 = 9 x x·x·x·x·x·x·x·x·x x Always write final answers with only positive exponents. When you have a negative exponent it will ”move” from the numerator to the denominator or from the denominator to the numerator. EX 4: EX 5: 3y 2 6x2 y 3 Simplify 10 = 5 not 3y 2 x−5 2x y 4x x−5 y 3 y6 Simplify 6 −3 = 11 2x y 2x 6. 4x−2 y 3 4y 3 x2 7. 7x4 y −5 z −1 7x4 y5z 8. 6(x2 y)−3 9. 10. 3x−4 y 2 5z 3 4a7 10c−8 b2 Exit Pass 2 9x5 y 4 1. Simplify x3 z 8 2. Simplify (5x−4 y)2 (x6 y −2 ) 3. What does m equal? (x3 y 2 )4 = xm · x5 · y 8 81x4 y 8 1. 16 z 25y 4 2. x2 3. (xm y 4 )2 9x2 y 3 81 1. Simplify ( 6 5 )2 = 8 4 xy xy 9y 6 2. Simplify (9x−6 y)(x2 y −5 ) = 7 x 6 x6 y 3 3y 2 5x4 z 3 2a7 c8 5b2
© Copyright 2026 Paperzz