North Finland Unit Q27/2007/45 Rovaniemi 18.12.2007 Petrophysical laboratory measurements from the drill cores of the Sakiatieva gold deposit at Sodankylä Pertti Turunen and Veikko Keinänen Susceptibility (SI) 10 0 10 -1 10 -2 10 -3 10 -4 Gold [ppb] No data Au < 20 20 Au < 40 40 Au < 60 60 Au < 80 Au 80 2500 2750 3000 Density (kg/m3) 3250 3500 GEOLOGICAL SURVEY OF FINLAND DOCUMENTATION PAGE Date / Rec. no. 18.12.2007 Authors Type of report Pertti Turunen and Veikko Keinänen Archive report Commissioned by Title of report Petrophysical laboratory measurements from drill cores of the Sakiatieva gold deposit at Sodankylä Abstract The report represents the petrophysical properties measured from the drill cores of the Sakiatieva gold deposit at Sodankylä. The data are considered from the viewpoint of the variation of rock type and of the content of chemical elements. The variation of density, magnetic susceptibility, intensity of remanent magnetization, and Q value does not unambiguously classify rock types into separate units. In the same way, the correlations between the physical properties and the analysed elemental contents are so low that the elements explain only partly the physical property variation. Obviously a major part of the variation of the physical properties is caused by the variation of rock structure. The densities of ore containing rocks are lower than the densities of other rocks, and the magnetic properties of ore containing rocks are higher than those of other rocks. Keywords Petrophysical properties, gold Geographical area Finland, Lapland Province, Sodankylä Commune, Sakiatieva Map sheet 3741 04 Other information Report serial Archive code Q27/2007/45 Total pages Language 14 + 5 appendices English Price Confidentiality Public Unit and section Project code North Finland Unit 2901005 Signature/name Signature/name Pertti Turunen Veikko Keinänen GEOLOGIAN TUTKIMUSKESKUS KUVAILULEHTI Päivämäärä / Dnro 18.12.2007 Tekijät Raportin laji Pertti Turunen ja Veikko Keinänen Arkistoraportti Toimeksiantaja Raportin nimi Petrophysical laboratory measurements from drill cores of the Sakiatieva gold deposit at Sodankylä [= Petrofysikaaliset laboratoriomittaukset Sodankylän Sakiatievan kultaesiintymän kairansydämistä] Tiivistelmä Raportissa esitellään Sodankylän Sakiatievan kairasydämistä tehtyjä laboratoriomittaksia. Tuloksia tarkastellaan kivilajivaihtelun ja kemiallisten alkuainepitoisuuksien kannalta. Tiheys-, suskeptiivisuus-, remanenssi- ja Königsbergerin suhdevaihtelu ei luokittele kivilajeja yksikäsitteisesti omiksi yksiköikseen. Samoin petrofysikaalisten ominaisuuksien ja analysoitujen alkuainepitoisuuksien väliset korrelaation ovat niin pieniä, että alkuaineet selittävät vain osan petrofysikaalisten ominaisuuksien vaihtelusta. Ilmeisesti suuri osa petrofysikaalisten ominaisuuksien vaihtelusta aiheutuu kivilajien rakenteen vaihtelusta. Malmipitoisten kivien tiheydet ovat taustaa matalammat ja magneettiset ominaisuudet korkeammat. Asiasanat (kohde, menetelmät jne.) Petrofysikaaliset ominaisuudet, kulta Maantieteellinen alue (maa, lääni, kunta, kylä, esiintymä) Suomi, Lapin lääni, Sodankylä, Sakiatieva Karttalehdet 3741 04 Muut tiedot Arkistosarjan nimi Arkistotunnus Q27/2007/45 Kokonaissivumäärä Kieli 14 + 5 liitettä Englanti Hinta Julkisuus Julkinen Yksikkö ja vastuualue Hanketunnus Pohjois-Suomen yksikkö 2901005 Allekirjoitus/nimen selvennys Allekirjoitus/nimen selvennys Pertti Turunen Veikko Keinänen Contents Documentation page Kuvailulehti 1 INTRODUCTION 1 2 MEASUREMENTS 2.1 General 2.2 Density 2.3 Susceptibility 2.4 Intensity of remanent magnetization 2.5 Q value 1 1 1 1 2 2 3 DATA 2 4 PHYSICAL PROPERTIES OF MAIN ROCK TYPES 3 5 PHYSICAL PROPERTIES AND CHEMICAL ANALYSES 8 6 PHYSICAL PROPERTIES OF GOLD CONTAINING ROCKS 10 7 SECTION THROUGH DRILL HOLES R258 – R259 AS AN EXAMPLE 13 8 CONCLUSIONS 14 LITERATURE 14 1 1 INTRODUCTION This report represents data on physical properties of the drill cores from 26 holes drilled at the Sakiatieva gold occurrence, Sodankylä, northern Finland. The core samples were from holes drilled in 2004 – 2006. The petrophysical measurements were done in 2007 at the petrophysical laboratory, and the chemical analyses at the chemical laboratory of GTK at Rovaniemi. A total of 2412 petrophysical samples were measured. In addition to the petrophysical data, some correlations and statistics are presented as well considerations on the sources of the data variations. 2 2.1 MEASUREMENTS General The petrophysical properties of the drill core samples from 26 holes were measured in laboratory conditions at Rovaniemi. The suite consisted of the measurement of density, magnetic susceptibility, and the intensity of remanent magnetization. The samples were taken at every full depth meter where possible. If the rock at this depth was missing or was too broken, or if the distance to the nearest solid sample exceeded ~20 cm, the depth was rejected and the next full meter was considered. The measured samples were 5 to 10 cm in length. On the average, the volume of a 32 mm diameter sample is 50 – 60 cm3 and the mass is 150 – 200 g. The mass and volume differ if the core diameter varies as the sample length remains unchanged. Physical properties of rock samples are determined by educated and experienced personnel of the petrophysics laboratory of the GTK. The measurement procedures are described in the Standard Operating Procedures of the GTK petrophysics laboratory. A thorough description of the operations is documented by Puranen & Sulkanen (1985) and Puranen et al. (1993). 2.2 Density Density is measured by using the Archimedes submersion method. A standard sample is measured every morning to test the scales, and another standard of 1000.0 grams is weighed twice a month. First the sample is weighed in air and then submerged in water. The density of water depends slightly on the temperature. The water temperature is read in the morning and fed into the computer, and the computer demands a new value after 41 samples have been measured. The water is changed when it gets dirty and at all events every week. The mass of the sample is measured five times under computer control and the standard deviation is calculated. If the standard deviation is between preset limits, the average of the measured weighs is accepted as the result. The dimension of density is expressed in kg/m3. The accuracy of density determinations is better than 5 kg/m3. For a detailed description of density measurements see Puranen (1992). 2.3 Susceptibility The magnetic susceptibility is measured by using an AC bridge. The frequency of the circuit is 1024 Hz. The sample is placed inside the coil and the system subtracts the background susceptibility when the coil is empty. The susceptibility is scaled by the volume of the sample and demagnetization effects are approximated by a cylinder model. Susceptibility values are expressed as SI units and they are listed and stored as μSI units. The minimum measurable susceptibility value is 10 μSI or 10*10-6 SI. Negative (diamagnetic) susceptibilities are occasionally measured. Quartz is the most common diamagnetic mineral is quartz. For a detailed description of susceptibility measurements see Puranen et al (1992). 2 2.4 Intensity of remanent magnetization The intensity of remanent magnetization (or shortly remanence) is measured by a fluxgate element. The sample is placed and supported in the middle of a plastic box. The box is placed inside a μ-metal cylinder that acts as a shelter against the Earth´s magnetic field. The sample is measured in six directions according to a preset scheme. The dimension of remanent magnetization is A/m and it is listed and stored as mA/m. For a detailed description of remanence measurements see Puranen et al (1992). 2.5 Q value Q value or Königsberger ratio is not a measured quantity but a number calculated from remanence and susceptibility. Q relates the intensity of remanent magnetization to susceptibility so that it shows the strength of remanence as a causer of magnetic anomalies in relation to susceptibility. E.g. if Q value is unity, remanence is equally strong in causing magnetic anomalies as susceptibility. Königsberger ratio is defined as Q = J/κ/41, where J is intensity of remanence as A/m, κ is susceptibility as SI-unit, and 41 is the prevailing Earth’s magnetic field strength (in Finland 41 A/m). Q value is a dimensionless quantity. High Q values are connected to thin grain size of ferromagnetic minerals. 3 DATA In the following table, the column marked with “Bottom depth (m)” means the depth of the lowermost measured sample. If this differs considerably from the number of measurements, either the overburden has been thick or a number of samples have been missing due to voids or broken rocks. Table 1. Petrophysical measurements from the drill cores of Sakiatieva. Hole ID M374104R252 M374104R253 M374104R254 M374104R255 M374104R256 M374104R257 M374104R258 M374104R259 M374104R261 M374105R262 M374105R263 M374105R264 M374105R265 M374105R266 M374106R267 M374106R268 M374106R269 M374106R270 M374106R272 M374106R273 M374106R274 M374106R275 No of measurements 143 99 114 56 79 120 76 85 52 88 105 17 111 37 83 61 99 87 55 117 138 133 Bottom depth (m) 149 110 128 68 91 131 95 104 70 100 111 45 118 74 95 74 118 97 83 136 162 154 3 M374106R276 M374106R277 M374106R278 M374106R279 Σ 4 98 94 145 120 2412 131 116 157 134 PHYSICAL PROPERTIES OF MAIN ROCK TYPES The rocks have been classified into seven groups. More than 80 % of the samples were basic volcanites. Because alteration and ore minerals affect the physical properties, basic volcanites have been divided into three units. Ore means the zone of gold occurrence. Table 2 shows the measured petrophysical data. Table 2. Median values of the measured physical properties of main rock types. Rock type Number (-) 171 1348 495 107 169 90 32 2412 Phyllite Basic volcanite Altered basic volcanite Altered basic volcanite + sulphides Ore Quartz sulphide rock Scarn sulphide rock All Susceptibility (SI) 10 Density (kg/m3) 2928 3003 2965 2954 2908 2890 2931 2986 Susceptibility (SI) 0.00387 0.00114 0.00122 0.00356 0.00501 0.00400 0.00569 0.00126 Remanence (A/m) 1.30 0.07 0.12 1.33 1.68 1.69 2.37 0.16 0 10 -1 10 -2 10 -3 10 -4 Basic volcanite Altered basic volcanite Altered basic volcanite + sulphides Ore Quartz sulphide rock Scarn sulphide rock Phyllite 2250 2500 2750 3000 Density (kg/m3) 3250 3500 3750 Fig. 1. Cross-plot showing susceptibility vs. density for main rock types. Q value (-) 8.1 1.6 2.5 7.1 8.0 8.7 10.1 3.1 Frequency 0.15 Frequency 0.15 Frequency 0.15 Frequency 0.15 Fraquency 0.15 Frequency 0.15 Frequency 4 0.15 0.1 Phyllite 0.05 0 Basic volcanite 0.1 0.05 0 Altered basic volcanite 0.1 0.05 0 0.1 Altered basic volcanite with ore 0.05 0 Ore 0.1 0.05 0 0.1 Quartz sulphide rock 0.05 0 Scarn sulphide rock 0.1 0.05 0 2500 2750 3000 Density (kg/m3) 3250 3500 Fig. 2. Density histograms of main rock types. The histograms in Figures 2 - 5 show that the variation within each rock group is bigger than between the groups. This means that none of the measured properties can unambiguously be used to classify the core samples into rock types. The ultimate goal would be to be able to separate ore containing rocks from other rocks, but this is obscured by overlapping distributions. The density histograms show to kinds of density distribution; a narrow peak for basic volcatines and wide, flat and disconnected distribution for all other rocks. Alteration causes density of basic volcanites to go lower, and introduction of ore minerals enhances the effect. Frequency 0.2 0.15 0.1 0.05 0 Phyllite Frequency 0.2 0.15 0.1 0.05 0 Basic volcanite Frequency 0.2 0.15 0.1 0.05 0 Altered basic volcanite Frequency 0.2 0.15 0.1 0.05 0 Altered basic volcanite with ore Frequency 0.2 0.15 0.1 0.05 0 Ore Frequency 0.2 0.15 0.1 0.05 0 Quartz sulphide rock Frequency 5 0.2 0.15 0.1 0.05 0 Scarn sulphide rock 10 -4 10 -3 -2 10 10 -1 Susceptibility (SI) Fig. 3. Susceptibility histograms for main rock types. In susceptibility the paramagnetic peak at ~10-3 SI is pronounced for basic volcanites. Alteration increases susceptibility slightly. The ferromagnetic parts of the histograms for phyllites and all ore containing rocks look very similar which means that all these rocks contain some magnetite. Phyllites have the common distribution signature with ore containing rocks. Frequency Frequency Frequency Frequency Frequency Frequency Frequency 6 0.1 Phyllite 0.05 0 0.1 Basic volcanite 0.05 0 0.1 Altered basic volcanite 0.05 0 Altered basic volcanite with ore 0.1 0.05 0 Ore 0.1 0.05 0 Quartz sulphide rock 0.1 0.05 0 Scarn sulphide rock 0.1 0.05 0 10 -2 -1 10 0 10 Intensity of Remanence (A/m) 10 1 10 2 Fig. 4. Remanence histograms for main rock types. The intensity of remanent magnetization of phyllites and ore containing rocks have almost identical distributions. Alteration does not seem to affect the remanence. Frequency Frequency Frequency Frequency Frequency Frequency Frequency 7 0.1 Phyllite 0.05 0 0.1 Basic volcanite 0.05 0 0.1 Altered basic volcanite 0.05 0 0.1 Altered basic volcanite with ore 0.05 0 0.1 Ore 0.05 0 Quartz sulphide rock 0.1 0.05 0 Scarn sulphide rock 0.1 0.05 0 10 -1 10 0 10 1 10 2 Königsberger Ratio (-) Fig. 5. Q value histograms for main rock types. The Q values for phyllites and ore containing rocks are again almost identical. The Q values of most of the samples are around 10 which means that remanence must be taken into consideration in magnetic interpretation. As a whole, the graphs of remanence and Q value have a lot in common. The effective susceptibility, or the combined effect of susceptibility and remanence to cause magnetic anomalies, is almost an order of magnitude higher for ore containing rocks than for basic volcanites. Only the overlapping of the effective susceptibility of phyllites with ores may cause shadowing effects. In the next graph the distribution of the effective susceptibility of the seven rock groups is represented as box-whisker plots. The graphs show the min, max, median, 8 Effective susceptibility (SI) and lower and upper quartiles for each rock type. The high Q values of ore containing rocks make it possible to make a distinction between them and basic volcanites in magnetic field mapping. Alteration has a minor effect on effective susceptibility. 10 1 10 0 10 -1 10 -2 10 -3 10 -4 Phyllite BV ABV ABV + sulphides Ore QSR SSR Fig. 6. Effective susceptibility of main rock types. 5 PHYSICAL PROPERTIES AND CHEMICAL ANALYSES Several elements, including Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, La, Li, Mg, Mo, Na, Ni, P, Pd, Pb, Pt, Sb, Sc, Se, Si, Sr, Te, Th, Ti, V, Y, and Zn, were analyzed in the GTK Geolaboratory (Keinänen et al 2007). For the following examination Al, Ba, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Ni, P, S, Sc, Sr, Ti, V, Y, and Zn are considered versus each other and the measured physical properties. Some of the elements were excluded due to very low percentage levels or due to low number of analyses. Gold is discussed separately in the next chapter. The following table shows the correlation coefficients between each of the analysed elements and the physical properties. Because of large size the matrix has been split into two. Table 3. Correlations between physical properties and chemical analyses. ρ κ J Q Al Ba Ca Co Cr Cu Fe K Mg ρ κ J Q Al Ba Ca Co Cr Cu Fe K 1 0.321 0.165 -0.009 -0.085 0.030 0.190 0.096 0.009 0.039 0.081 -0.092 -0.065 1 0.800 -0.107 0.048 -0.113 0.080 0.422 0.360 0.241 0.374 0.078 0.349 1 0.075 -0.016 -0.150 0.006 0.416 0.265 0.279 0.372 0.116 0.240 1 -0.070 -0.036 -0.013 0.023 -0.007 0.087 0.053 -0.031 -0.036 1 0.432 0.068 -0.053 0.442 -0.270 -0.073 0.636 0.681 1 0.142 -0.217 -0.039 -0.238 -0.153 0.586 0.084 1 -0.049 -0.232 -0.079 0.103 0.148 -0.015 1 0.295 0.575 0.843 -0.055 0.176 1 0.035 0.064 0.197 0.782 1 0.677 -0.119 -0.098 1 0.070 0.038 1 0.382 9 Mn Ni P S Sc Sr Ti V Y Zn Mg Mn Ni P S Sc Sr Ti V Y Zn 0.106 0.075 0.148 0.037 -0.349 0.162 0.076 -0.349 -0.317 0.058 0.209 0.314 -0.276 0.382 -0.127 0.133 -0.239 0.046 0.023 -0.069 0.025 0.320 -0.342 0.435 -0.047 0.033 -0.260 0.130 0.121 -0.088 -0.009 0.017 -0.049 0.058 -0.038 -0.019 -0.050 0.007 0.013 -0.018 0.166 0.163 0.073 -0.240 0.366 0.156 0.306 0.077 -0.192 0.124 0.265 -0.092 0.278 -0.309 0.189 0.269 0.472 -0.054 -0.135 0.218 0.632 -0.130 0.241 -0.052 -0.004 0.774 0.221 -0.147 -0.039 0.053 0.103 0.451 -0.352 0.787 -0.087 -0.016 -0.322 0.179 0.208 -0.024 0.032 0.536 -0.514 0.129 -0.096 -0.163 -0.391 -0.025 -0.318 -0.080 0.013 0.237 -0.295 0.689 -0.008 -0.063 -0.282 0.288 0.435 0.094 0.245 0.308 -0.235 0.851 0.075 0.102 -0.161 0.332 0.447 0.039 Mg Mn Ni P S Sc Sr Ti V Y Zn 1 0.158 0.420 -0.319 -0.019 0.168 -0.018 -0.157 0.041 -0.260 -0.037 1 0.047 0.024 0.091 0.087 0.689 0.125 -0.055 -0.049 0.132 1 -0.585 0.278 -0.108 -0.060 -0.327 0.045 -0.083 -0.067 1 -0.385 0.001 0.196 0.637 -0.222 -0.002 0.127 1 0.008 -0.017 -0.371 0.347 0.429 -0.067 1 0.032 0.199 0.589 0.404 0.099 1 0.204 -0.123 -0.023 0.109 1 -0.042 -0.019 0.222 1 0.681 0.077 1 0.078 1 0.191 0.084 0.049 -0.067 0.437 0.213 0.393 0.230 0.045 0.131 The chemical analyses vs. density, susceptibility, intensity of remanence and Q ratio are represented in appendices 1 to 4. Density is linear but for all the others logarithms are used. LMS (Least Mean Square) lines are added to the graphs. Density Susceptibility Remanence Q value 0.5 0.4 Correlation coefficient 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 Al Ba Ca Co Cr Cu Fe K Mg Mn Ni P S Sc Sr Analysed elements Fig. 7. Correlation coefficients between physical properties and chemical analyses. Ti V Y Zn 10 Table 3 and the graph in Figure 7 show that the correlations between the measured physical properties and the analysed elements are rather low. Density correlates negatively with Sc, V and Y. Correlations with the metals Co, Cr, Cu, Fe, Ni, Ti and Zn are positive but so low that structural properties of the rocks easily shadow their effects. For susceptibility there are more rather strong correlations with some metals and with sulphur. The same applies to the intensity of remanence – its correlation coefficient with susceptibility is as high as 0.8. The combined effect of susceptibility and remanence, as noted in Figure 6, makes the magnetic method effective for ore prospecting in the area. The Königsberger ratio does not correlate with any of the measured elemental abundances. The coefficient varies between -0.1 and +0.1. 6 PHYSICAL PROPERTIES OF GOLD CONTAINING ROCKS The content of gold does not necessarily cause any anomalies in the physical properties of rocks but it may be useful to see if there exist correlations between physical properties and gold containing rocks. The gold content has been divided into five classes as one can see from Table 4 and Figure 8. Table 4. Median values of physical properties in five gold content classes. Au class (ppb) All <20 20≥Au<40 40≥Au<60 60≥Au<80 Au≥80 Au content (ppb) 10 26 48 69.5 205 No (-) 2576 835 188 57 36 179 Density (kg/m3) 2981 2978 2956 2938 2936 2929 Susceptibility (SI) 0.00130 0.00159 0.00383 0.00416 0.00409 0.00041 Remanence (A/m) 0.19 0.38 1.38 1.29 1.20 1.46 Q value (-) 3.29 4.88 7.27 7.47 7.56 7.46 Most of the points cluster near the paramagnetic-ferromagnetic boundary at ~10-3 SI. The distribution of the points in various gold classes is rather scattered although the susceptibility value of 10 Susceptibility (SI) 10 Fig. 8. Cross-plot showing susceptibility vs. density for various gold content classes. 10 0 Au [ppb] No data Au < 20 20 Au < 40 40 Au < 60 60 Au < 80 Au 80 -1 -2 10 -3 10 -4 2500 2750 3000 Density (kg/m3) 3250 3500 11 the red points tend to be higher than that of other points. In the graphs in Figures 9 to 12 the median of each measured property is shown for five gold content classes. Density shows two peaks, one around 2750 kg/m3 and the other around 3000 kg/m3. The increase of gold does not increase density. For susceptibility the increase on gold produces higher susceptibilities. Very similar behaviour is apparent with remanence, but for Q value there seems not to be any correlation. Fig. 10. Susceptibility histograms for Au content classes. 0.10 All 0.05 0.00 0.10 Au < 20 0.05 0.00 0.10 20 Au < 40 40 Au < 60 60 Au < 80 Au 80 0.05 0.00 0.10 0.05 0.00 0.10 0.05 0.00 0.10 0.05 0.00 2500 Frequency Frequency Fraquency Frequency Frequency Frequency Fig. 9. Density histograms for Au content classes. Frequency Frequency Fraquency Frequency Frequency Frequency The variation of the media of gold content in each group and the corresponding physical properties is shown in Figure 13. 0.15 0.10 0.05 0.00 2750 3000 Density (kg/m3) 3250 3500 All 0.15 0.10 0.05 0.00 Au < 20 0.15 0.10 0.05 0.00 0.15 0.10 0.05 0.00 0.15 0.10 0.05 0.00 0.15 0.10 0.05 0.00 10 -4 20 Au < 40 40 Au < 60 60 Au < 80 Au 80 10 -3 Susceptibility (SI) 10 -2 -1 10 Frequency Frequency Fraquency Frequency Frequency Frequency 12 0.10 All 0.05 0.00 0.10 Au < 20 0.05 0.00 0.10 20 Au < 40 40 Au < 60 60 Au < 80 Au 80 0.05 0.00 0.10 0.05 0.00 0.10 0.05 0.00 0.10 0.05 0.00 10 -2 -1 0 10 10 10 Intensity of Remanence (A/m) 1 2 10 Frequency Frequency Fraquency Frequency Frequency Frequency Fig. 11. Intensity of remanence histograms for Au content classes. 0.15 0.10 0.05 0.00 All 0.15 0.10 0.05 0.00 Au < 20 0.15 0.10 0.05 0.00 0.15 0.10 0.05 0.00 0.15 0.10 0.05 0.00 0.15 0.10 0.05 0.00 10 -1 20 Au < 40 40 Au < 60 60 Au < 80 Au 80 10 0 10 1 Q value (-) Fig. 12. Q value histograms for Au content classes. 10 2 13 10 2970 Q value (-) 1 2980 10-1 2950 2940 10-2 2930 -3 2920 Susceptibility (SI) Density (kg/m3) 2960 Remanence (A/m) 0 10 10 0 0.05 0.1 Au (ppm) 0.15 0.2 0.25 Fig. 13. Relationship between gold content groups and physical properties. The horizontal axis shows the median value of the gold content - the five dots represent the medians of the five groups - of the analyses that fall between the boundaries given in table 3. The locations of the dots on the vertical axes similarly give the median values of density, susceptibility, remanence, and Q value. Density falls with growing Au content, but all the other properties show slight increase with increasing Au content. 7 SECTION THROUGH DRILL HOLES R258 – R259 AS AN EXAMPLE Appendix 5 shows petrophysical data from a section defined by two gold containing drill holes. At the top in the middle and on the right the petrophysical properties along with Au content is shown for total lengths of the holes R258 and R259. At the bottom a closer look at the mineralized zone is given. Note the direction of the x axes - depth runs from right to left. The holes intersect a mineralized zone containing up to 8 ppm gold and increased contents of several other metals. The zone, extending from 45 to 58 m in R258, is not clearly visible in density even if the density level is rather high, ~3000 kg/m3. Near the gold maximum the density shows a local minimum. All the magnetic properties show similar patterns with each other. In R259 the mineralized zone is between 75 and 85 m. Density, susceptibility, and remanence all show positive anomalies here with the exception of negative susceptibility at 82 m. There are, however, similar positive anomalies with no gold content. Gamma radiation intensity was measured from the core samples of R359 in laboratory. After removing the background radiation the readings were scaled with the mass of the sample to yield the specific activity. This makes it possible to compare the activities of various samples. As one can see from the graph, the radiation levels are very low. Negative values are the combined effect of the very low radiation level and the statistical nature of radioactive radiation. 14 8 CONCLUSIONS Density is not very suitable in prospecting the Sakiatieva occurrence. The variation of density within each rock type is bigger than between separate rock types. The correlation between density and the analysed elements is low and the most notable correlation coefficients are negative. This suggests that structural properties of rocks are the reasons behind density variation. Especially the negative correlation between density and Au content is notable. Susceptibility of ore containing rocks is highest but causes overlapping effects with phyllites. The correlation coefficients with analysed elements are mostly positive and explain more of the variation than did density. Again, gold content correlates positively with susceptibility. Susceptibility, or the magnetic method, is a suitable tool in prospecting for gold bearing rocks. The intensity of remanence correlates strongly with susceptibility and thus what is said about susceptibility applies to remanence, too. Q value has very little correlation with any rock type or element the good correlations of susceptibility and remanence disappear through the division process. Electric and radioactive methods would possibly have been even better than susceptibility in detecting and examining ore and especially gold bearing rocks. Unfortunately all the drill holes were blocked and no downhole loggings could be made. LITERATURE Keinänen, V., Pulkkinen, E., Ojala, J.V., Salmirinne, H., Chernet, T., Räsänen, J., Turunen, P. and Sarapää, O. 2007. Report on the Sakiatieva gold prospect: claims (Ruosselkä8: 7300/1 and Sakiatieva 7392/1) Sodankylä, Finland. 47 p., 3 app. GTK, archive report, M06/3741/2007/10/60 Standard Operating Procedures of the GTK petrophysics laboratory. http://document.gtk.fi/docushare/dsweb/View/Collection-6052 Puranen, R. & Sulkanen, K. 1985. Technical description of microcomputer-controlled petrophysical laboratory. 257 p. GTK, archive report, Q15/27/85/1. Puranen, R., Sulkanen, K., Poikonen, A., Nissinen, R., Simelius, P. & Harinen, L. 1993. User's manual for computerized petrophysics laboratory. 50 p., 4 app. GTK, archive report, Q19.1/27/93/1. Puranen, R. 1992. Tiheysmääritykset AT-mikrotietokoneen ohjauksessa (Density determinations under AT micro computer control). 4 p., 2 app. GTK, archive report, Q15/27.1/92/1. Puranen, R., Sulkanen, K. & Nissinen, R. 1992. Suskeptibiliteettimittaukset ATmikrotietokoneen ohjauksessa (Susceptibility determinations under AT micro computer control). 6 p., 11 app. GTK, archive report, Q15/27.2/92/1. Puranen, R., Nissinen, R. & Sulkanen, K. 1992. Remanenssimittaukset AT-mikrotietokoneen ohjauksessa (Remanence determinations under AT micro computer control). 8 p., 9 app. GTK, archive report, Q15/27.2/92/2. Chemical analyses vs. density. 10000 200 0 0 3000 3500 50000 0 2500 3 kg/m kg/m 500000 400000 ppm ppm 5000 2500 3000 3500 2500 3 3000 kg/m 3000 Ni ppm 2000 0 3000 3500 2500 0 ppm 800 4000 2000 3000 3500 3000 kg/m3 3500 ppm 3000 3500 200 Sc 2500 3000 3500 Y 200 40 0 3500 Zn 150 100 0 2500 3000 kg/m3 3500 2500 3000 kg/m3 2500 3000 kg/m3 kg/m3 50 3000 100 0 250 Sr 150 10 3500 3500 kg/m 0 3000 3000 3 0 20 kg/m3 2500 50 V 2500 2000 15 2500 Mn 3000 5 60 0 2500 4000 kg/m 200 0 5000 0 kg/m3 400 kg/m 3 S 3500 1000 2500 20 3000 3 50000 3500 600 2500 Mg 3 100000 ppm Ti 3500 50000 0 kg/m3 1000 3000 kg/m 25000 200000 3000 0 2500 150000 kg/m3 0 10000 0 2500 500 100000 kg/m 2000 100 75000 2500 1000 3 20000 3500 P 200 3500 Cr 1500 3 K 3 1000 1000 3000 30000 200000 3000 ppm Fe 0 kg/m ppm 40000 100000 2500 6000 2500 kg/m 300000 0 8000 3500 3 ppm Cu 7500 4000 3000 ppm 10000 100000 ppm 2500 Co 300 ppm 400 2000 ppm 20000 600 Ca ppm 30000 Ba 400 ppm 800 150000 ppm Al ppm ppm 40000 1000 ppm 50000 Appendix 1. 3500 3500 Chemical analyses vs. susceptibility 200 0 0 10 -3 -2 10 10 -1 10 -5 -4 10 (SI) 500000 Cu ppm ppm -1 10 10 5000 40000 300000 200000 0 -4 10 10 -3 -2 10 10 -1 10 -5 -4 10 (SI) -3 10 10 -2 3000 ppm 3000 2000 0 -5 -4 10 10 -3 -2 10 10 -5 -4 10 -3 10 100000 -5 -4 10 10 -2 2000 -3 -2 10 10 -1 -5 10 -4 10 10 -3 (SI) -2 10 10 -1 5000 Mg 10 -3 -2 10 10 -5 -4 10 -3 10 10 -2 -1 10 10 -5 -4 10 -3 10 10 -2 -1 10 (SI) -4 10 -3 (SI) -2 10 10 -1 150 100 0 10 -5 -4 10 10 -3 (SI) -2 10 10 -1 -3 10 10 -2 10 10 -2 10 -1 Sr 100 -5 10 -4 10 -3 10 (SI) 10 -5 -4 10 -3 10 (SI) Zn 200 0 10 -4 10 150 250 40 -1 (SI) 50 -5 -5 200 (SI) 20 10 10 Sc 10 Y 10 0 10 -1 -2 2000 0 -4 10 1000 20 10 -3 10 3000 0 -5 -4 10 Mn 4000 0 10 -5 (SI) 15 60 0 10 (SI) 200 0 -1 10 50 -1 400 -2 5 10 600 10 50000 ppm ppm 4000 10 100000 V 800 -3 10 50000 S (SI) Ti -4 10 (SI) 150000 1000 6000 -5 10 0 200000 (SI) 8000 -1 75000 10 P 10 0 (SI) 2000 -1 0 0 0 10 10 500 25000 -1 1000 1000 -2 10 K (SI) Ni -3 1000 100 10000 10 ppm 4000 10 20000 0 -5 -4 10 30000 100000 10 -5 200 (SI) Fe 400000 2500 ppm -2 (SI) 7500 ppm 10 ppm 10000 -3 10 ppm -4 10 0 ppm -5 10 50000 Cr 1500 ppm 10000 300 100000 ppm 400 2000 Co ppm ppm 20000 600 400 Ca ppm 800 30000 150000 Ba ppm 40000 ppm 1000 Al ppm 50000 Appendix 2. 10 -2 -1 10 -1 Chemical analyses vs. intensity of remanence. 400 200 0 0 1 10 2 0 -2 10 10 -1 10 A/m 500000 Cu ppm ppm 1 10 2 -2 10 5000 40000 300000 200000 0 -1 10 0 10 1 10 2 -2 10 10 -1 10 A/m 10 0 10 1 10 3000 ppm 3000 2000 0 -2 -1 10 0 10 1 10 2 -2 -1 10 10 0 10 1 10 Ti -2 -1 10 2000 0 1 10 10 2 -2 -1 10 0 10 A/m 1 10 2 10 -2 -1 10 0 10 1 10 2 1 10 200 Sc -2 10 -1 10 0 10 1 10 2 10 A/m 250 Y 40 -1 0 10 A/m 1 10 2 10 150 100 0 -2 10 -1 10 10 0 A/m 1 10 10 2 0 10 1 10 10 2 Sr 100 -2 10 -1 10 0 10 A/m -2 10 -1 10 0 10 A/m Zn 200 0 10 -1 10 150 50 -2 10 A/m 10 2 20 10 -2 10 0 10 10 2000 0 0 1 3000 0 10 2 Mn 4000 50 -1 10 0 20 10 1 10 1000 A/m 0 10 5000 5 -2 0 10 A/m 15 10 -1 10 A/m 200 0 -2 10 Mg 10 S 60 400 2 10 50000 ppm ppm 4000 10 100000 2 600 1 10 50000 0 V 800 6000 0 10 A/m 0 A/m 1000 -1 10 75000 200000 A/m 8000 -2 10 150000 10 0 2 K 10 P 2000 10 0 25000 0 10 500 A/m 1000 1000 10 1000 100 100000 A/m Ni 1 10 200 10000 2 ppm 4000 0 20000 0 -2 10 30000 100000 10 -1 10 Cr 1500 A/m Fe 400000 2500 ppm 10 A/m 7500 ppm 0 ppm 10000 10 ppm 0 10 50000 ppm -1 10 100000 ppm -2 Co 300 ppm 10000 Ca 2000 ppm 600 400 ppm ppm 20000 10 Ba 800 30000 150000 ppm Al 40000 ppm 1000 ppm 50000 Appendix 3. 1 10 2 10 10 2 Chemical analyses vs. Q value. 0 10 10000 -3 -2 10 10 -1 10 0 10 1 10 Cu ppm -1 10 10 0 10 1 10 40000 300000 200000 100000 0 4000 101 10-3 10-2 10-1 100 3000 Ni ppm 3000 2000 0 ppm 4000 2000 400 -3 -2 10 10 -1 10 0 10 1 ppm 1 10 5000 4000 0 0 10-3 10-2 10-1 100 101 101 -3 -2 10 10 -1 10 0 1 10 -3 -2 10 10 -1 10 0 1 10 10 1 Mn 101 Sr 100 0 101 Zn 150 100 0 10 0 50 200 0 10 10-3 10-2 10-1 100 Sc 250 40 -1 2000 150 10-3 10-2 10-1 100 Y 10 0 10 5 -2 10 3000 15 50000 -3 1000 50 10 10 Mg 20 20 0 10 0 10 10-3 10-2 10-1 100 S 60 600 -1 10 50000 101 100000 101 -2 10 75000 200 0 -3 10 0 V 800 6000 1 10 150000 1000 0 100000 10-3 10-2 10-1 100 P 10-3 10-2 10-1 100 Ti 0 0 0 ppm 8000 10 K 200000 2000 101 -1 500 25000 0 10-3 10-2 10-1 100 10 1000 100 10000 101 1000 1000 -2 10 20000 0 10-3 10-2 10-1 100 -3 30000 ppm ppm 5000 -2 10 Fe 400000 2500 ppm -3 500000 7500 ppm 0 200 ppm 0 ppm 200 ppm 10000 50000 Cr 1500 ppm 400 2000 Co 300 100000 ppm ppm 20000 600 400 Ca ppm 800 30000 150000 Ba ppm 40000 ppm 1000 Al ppm 50000 Appendix 4. -3 10 -2 10 -1 10 0 10 1 10 10-3 10-2 10-1 100 101 R259 8 8 4 3250 3250 ρ (kg/m3) 0 3000 2750 10 -2 10 -3 1 0 -2 Basic volcanics 60 Ore 40 20 Basic volcanics Saprock -3 1 10 0 -1 0 20 0 -20 Bq/kg 80 -1 10 10 A vo lter lc ed an b ic as s ic 100 su lp hi de -1 Q ro ua ck rtz 10 10 10 J (A/m) 10 10 A vo lter lc ed an b i c as s ic J (A/m) 10 2750 120 100 80 A vo lter lc ed an b ic as s ic Q su ua r lp tz hi de ro ck -1 3000 κ (SI) 10 Appendix 5. 4 0 κ (SI) ρ (kg/m3) Au (ppm) R258 Au (ppm) Section through drill holes R258 – R259 (Keinänen et al 2007). Ore 3250 3250 ρ (kg/m3) 0 2750 J (A/m) 10 -3 10 10 10 10 1 0 -1 10 -3 56 52 48 Depth (m) 44 40 -1 10-2 10 60 1 100 -1 10 -3 10 10 10-2 -1 10-2 -1 10 κ eff (SI) -1 -2 10 2750 κ (SI) 10 Basic volcanics 3000 J (A/m) κ (SI) 10 Altered basic volcanics + sulphides 20 4 0 3000 40 8 Au (ppm) 4 κ eff (SI) ρ (kg/m3) Au (ppm) 8 60 Depth (m) -3 95 90 85 80 Depth (m) 75 70 0 Saprock
© Copyright 2025 Paperzz