FIRST ORDER DIFFERENTIAL EQUATIONS FELIX HARVEY-ROSSER - 3457606 2D 1. a) dy − y tan x = 2 sin x dx R(x) = e− R tan xdx = e− ln sec x = 1 = cos x sec x d (y cos x) = 2 sin x cos x dx Z y cos x = sin 2xdx y cos x = 1 cos 2x + c 2 1 y cos x = − (1 − 2 sin2 x) + c 2 1 y cos x = sin2 x − + c 2 y = sin x tan x + k sec x ——— b) dy + y cot x = cos 3x dx R R(x) = e cot xdx = eln sin x = sin x d (y sin x) = cos 3x sin x dx Z y sin x = cos 3x sin x · dx y sin x = 1 2 Z sin 4x − sin 2x · dx cos 4x cos 2x − + +c 4 2 cos 4x cos 2x y sin x = − + +c 8 4 1 y sin x = 2 1 2 FELIX HARVEY-ROSSER - 3457606 c) 1 − x2 y 0 − xy = 1 y0 − R R(x) = e −x dx 1−x2 x 1 y= 1 − x2 1 − x2 1 R = e2 −2x dx 1−x2 1 = e 2 ln(1−x 2) = p 1 − x2 p 0 √ 1 − x 2 2 = y 1−x 1 − x2 Z p 1 2 √ y 1−x = 1 − x2 p y 1 − x2 = arcsin x + c y= arcsin x + c √ 1 − x2 ——— d) dy − (1 + x)y = (1 − x2 )1/2 dx √ dy (1 + x) 1 − x2 − y = dx 2(1 − x2 ) 2(1 − x2 ) 2(1 − x2 ) dy 1 1 1 − y= √ dx 2 (1 − x) 2 1 − x2 R(x) = e 1 2 R −1 dx (1−x) 1 = e 2 ln(1−x)dx = (1 − x)1/2 = √ √ 1 1−x d y 1−x = √ dx 2 1 − x2 √ 1 d 1 y 1−x = √ dx 2 1+x Z √ 1 1 p y 1−x= dx 2 (1 + x) √ √ y 1−x= 1+x+c ——— √ 1−x FIRST ORDER DIFFERENTIAL EQUATIONS 2. a) 1 dy + y = x; dx x R R(x) = e 1 dx x y(1) = 0 = eln x = x d (yx) = x2 dx Z yx = x2 dx yx = x3 +c= 3 x2 c + 3 x y(x) = 1 +c=0 3 1 c=− 3 y(1) = y(x) = x2 1 − 3 3x ——— b) dy = y + ex ; dx x = 0, y = 1 dy − y = ex dx R(x) = e− R dx = e−x d y · e−x = ex · e−x dx Z −x y · e = dx y · e−x = x + c y(x) = xex + cex y(0) = c = 1 y(x) = xex + ex 3 4 FELIX HARVEY-ROSSER - 3457606 c) dy 2 = xe−x − 2xy; dx x = 0, dy 2 + 2xy = xe−x dx R(x) = e R 2xdx = ex 2 d 2 2 2 y · ex = xe−x · ex dx d 2 y · ex = x dx x2 ye Z = xdx yex = x2 +c 2 2 y(x) = x2 2 + c e−x 2 y(0) = c = 2 y(x) = x2 2 + 2 e−x 2 ——— y=2 FIRST ORDER DIFFERENTIAL EQUATIONS 3. m dv = mg − kv; v(0) = 0 dt k dv + v=g dt m k let = ω02 m dv + ω02 v = g dt R(t) = e R ω02 dt 2 = eω0 t d 2 2 v · eω0 t = g · eω0 t dt v·e ω02 t Zt = 2 0 g · eω0 t dt0 0 ω02 t v·e Zt =g 2 0 eω0 t dt0 0 2 0 v·e ω02 t eω0 t =g 2 ω0 2 t 0 e ω0 t − 1 v·e =g ω02 g 2 v = 2 1 − e−ω0 t ω0 kt mg v(t) = ẋ(t) = 1 − e− m k ω02 t ——— 5
© Copyright 2026 Paperzz