Chapter 1 Exercise 1A Q. 1. (i) Q. 4. Q → → → x b a+ a 1→ 1→ –x + –y 2 2 → → y → b Q. 5. Q → a (ii) → → a+ → a → b → c → a+b (a→+ → b) + → c → b → b (iii) → a Q. 6. Q → a+ → → → b a b → a + (→ → b+c ) → b b→ + → c → c → (iv) → a+ a b → __› ___› __› __› ___› __› Yes; (a + b ) + c = a + (b + c ). → b (v) → Q. 7. Q → b → a+b → a → y ___› → → 3x + 1.5y (vi) 0 , The null vector → x Q. 2. → → 2a +b → a Q. 8. Q → → x → 2 Q. 3. x→– y –1 → b → y y → x 1→ → – –2x y → – 4x → y Q. 9. Q 5 cm; E 53° N. 1 Q. 10. Approximately 7 cm due East. Q. 11. 13 cm. _______ Q Q. 6. (i) Magnitude = √ 32 + 42 = 5 __ _› 1 › ∴ Unit vector = __(3i + 4j ) 5 __ __› 1__ › (ii) ___ (i + 2 j ) √5 __ __ 1__ › › (iii) ___ (i − j ) √2 __› __› 1 ___ (−3i − j ) (iv) ____ √10 __ __ 1 __ › › __ (v) (√ 3 i + j ) 2 Q Q. 7. k(2i − j ) + l(4i + 3 j ) = 2i − 11j ___ (i) √ 29 , E 21° 48’ N. __ (ii) √ 8 , NE. (iii) 5, E 36° 52’ S. (iv) 13, W 67° 23’ S. ___ (v) √ 20 , W 26° 34’ N. __ (vi) √ 2 , NE. 1__ , SE. (vii) ___ √2 (viii) 1, W 53° 8’ S. (x) √ 12 , E 30° N. Q. 8. Q __› __› __› __› __› ___› __› = 5i − 4j __› __› __› __› __› __› __› __› __› __› = −i − 2j __› __› ___› __› __› __› __› __› __› __› __› Q. Q 11. __› __› = 12i + 5j ∴ k = ±2 Q. Q 12. (i) √ 13 ____ (ii) √ 104 ________ __› (iii) |x + y | = √ 122 + 52 = 13 __› __› ___ = 3.606 + 10.20 __› = 13.806 __› __› __› −2 ___ ________ ___ ___ ___ (iii) √ 80 < √10 + √ 50 since 8.944 < 10.233 20 −40 × ___ = ____ = −1 8 40 5 Q. Q 16. −2 −6 × ___ = ___ = −1 6 6 1 ∴⊥ 3 __ −t ___ 9 6 × __ = −1 2 ∴t=3 __› (ii) √ 16 + 64 = √80 = 8.944 2 Q Q. 15. (i) 4i + 8 j ___ −8 −24 × ___ = ____ = −1 4 24 6 ∴⊥ 3 __ ∴⊥ __› ∴|x + y | < |x | + |y | (since 13 < 13.806) Q. 4. Q. 14. Q ____ (iv) |x | + |y | = √ 13 + √104 ___ √2k2 = √50 ∴ k = ±5 Q Q. 13. ___ ____ √121 + k2 = √125 ____ x + y = (2i + 3j ) + (10i + 2j ) __› ____ ________ = 7j __› _______ ∴ p = ±5 __› __› __› √50 = √2p2 (iv) 2a − 3b = 2(3i − j ) − 3(2i − 3j ) Q. 3. __› √65 = √49 + k2 ___ Q Q. 10. (iii) b − a = (2i − 3j ) − (3i − j ) __› __› ∴ k = ±4 __› = i + 2j __› __› __› __› __› 4i − 2 j + t(7i + 5 j ) = ki + 0 j ___ Q Q. 9. (ii) a − b = (3i − j ) − (2i − 3j ) ___› __› ∴ t = 0.4 (i) a + b = (3i − j ) + (2i − 3j ) __› __› ∴ 4 + 7t = k and −2 + 5t = 0 (xi) 4, due West. ___› __› Solving gives l = −2, k = 5 ___ __› __› ∴2k + 4l = 2 and −k + 3l = −11 (ix) 2, W 30° N. Q. 2. __ √5 ≥ √20 − √5 since 2.236 ≥ 4.472 − 2.236 Exercise 1B Q. 1. ___ __ Q Q. 5. Q. 17. Q p __ −2 × ______ = −1 p+1 ∴ 4p + 4 = 2p 4 ∴ p = –2 Q Q. 5. x Q. 1. (i) |AB| = H cos q; |BC| = H sin q (ii) |AB| = H sin q; |BC| = H cos q (iii) |AC| = H cos q; |BC| = H sin q 5 12 (i) cos A = ___, sin q = ___ 13 13 35 12 (ii) cos A = ___, sin q = ___ 37 37 __ __ √7 √7 ___ ___ (iii) sin A = , tan A = 4 3 (iv) cos = ( )( ) 7 ___ 1__ 7 ___ ∴ x = H ____ = ___ H 10 √50 √2 ∴ H : x = 10 : 7 Exercise 1D E 40 ___ Q. 1. Q 41 __› __› __› (i) |AB| = 4√ 3 cm; |BC| = 4 cm __ __› __› __› __› = 9.511i + 3.09j (ii) |XY| = 2 m; |YZ| = 2 m __› __› (iii) 8 cos 45° i − 8 sin 45° j __ __› (iii) |AB| = 10 sin 40° = 6.428 m __ __› = 4√ 2 i − 4√ 2 j |BC| = 10 cos 40° = 7.66 m __› __› (iv) − 20 cos 20° i + 20 sin 20° j __› (iv) |XY| = 20 cos 35° = 16.38 cm __› = −18.794i + 6.84 j |XZ| = 20 sin 35° = 11.47 cm __› ___ __› ___ (v) −√ 50 cos 45° i − √ 50 sin 45° j __› (v) |PQ| = 40 cos 20° = 37.59 m __› = −5 i − 5 j |QR| = 40 sin 20° = 13.68 m __› __› (vi) 12 cos 39° i − 12 sin 39° j __› (vi) |PQ| = 12 cos 60° = 6 m __› = 9.3252 i − 7.5516 j __ |RQ| = 12 sin 60° = 6√ 3 m (vii) |AB| = 15 cos q = 12 cm __› (i) 2 cos 60° i + 2 sin 60° j = i + √ 3 j (ii) 10 cos 18° i + 10 sin 18° j __ Q. 3. H x = ADJ = H cos a cos b (iv) |AC| = H cos q; |AB| = H sin q Q. 2. b α H cos a Exercise 1C Q. Q 2. |BC| = 15 sin q = 9 cm 11 (viii) |RQ| = 78 cos a = 30 m |PQ| = 78 sin a = 72 m A ___ (ix) |XY| = √ 13 cos q = 3 4 ___ |YZ| = √ 13 sin q = 2 ___ (x) |AB| = √20 cos a = 4 ___ |BC| = √ 20 sin a = 2 __› ___› __› u = −10 cos a i − 10 sin a j __› _› __› = −8i − 6 j __› __› v = 13 cos b i − 13 sin b j H sin q Q. 4. H q ___› f x x = ADJ = H sin q cos f 3 5 ∴ x = (13) __ ___ = 3 5 13 ( )( ) __› _› = 12i − 5j __› _› __› ∴ u + v = 4i − 11j ___› ___› __› w = −(u + v ) _› __› = −4i + 11j 3 ____________ ___› |w | = √ (−4)2 + (11)2 Exercise 1E E ____ = √ 137 Q. 1. Q = 11.7 _› ⇒ 10 − 26 cos a = 0 5 ⇒ cos a = ___ 13 12 ⇒ sin a = ___ 13 __› __ p = √ 8 cos 45° i + √ 8 sin 45° j __› _› _› ___› q = 4 cos 30° i − 4 sin 30° j ___ = 2√ 3 i − 2 j __› r = −10 cos 40° i − 10 sin 40° j __› = −7.66i − 6.428j Q Q. 2. __› _› __› Q. 5. No i -component ⇒ 4 − 5 cos a = 0 4 ⇒ cos a = __ 5 3 ⇒ sin a = __ 5 _› ___› __› __› b = −13 cos a i + 13 sin a j __› _› = −12i + 5 j ___› __› ___ _› __› Q. 6. ___› Q. Q 3. (i) x = −25 cos Ai + 25 sin Aj __› _› __› _› _› _› ___› __ 1 › __ _› _› (ii) ∴ x + y = −20i + 15j + 8i − 15j _› j -component __› __› (iii) |x + y | = 12 units 4 xi + 2 xj ___› 1 __ _› x)i + __ _ √3 › ___ xj 2 _› 1 No i -component ⇒ − 4 + __ x = 0 2 ⇒x=8 2 ___› = −12i , which has no _ › 2 __ _ √3 › ___ ∴ a + b = (−4 + _› __› __› __› y = 17 cos Bi − 17 sin Bj = 8i − 15j Let |b | = x b= __› __› ( )) › ___› a = −4i __› = −20i + 15j _ = 0i − j (iii) |a + b | = 5 units __› ( › __› = 5 j , along the j -axis __› _ __› › › 3 › ∴ a + b = 0i + − 4 + 5 __ j 5 _ _ __› _› (ii) ∴ a + b = 12i − 12i + 5 j __› __› _› _› _› (i) a = 12i __› ∴ a + b = (4 − 5 cos a)i + (−4 + 5 sin a)j ∴ r + s + t = −2.6 i + 5.8 j __› ___› ___› _› __› __› b = −5 cos ai + 5 sin a j = 10.3367 i + 3.762 j __› __› __ = 4i − 4j t = 11 cos 20° i + 11 sin 20° j _› ( ) __› ___› _› _› __› ( ) _› __› _› _ ___ ___ __› 1__ › 1__ › a = √ 32 ___ i − √ 32 ___ j √2 √2 s = −10 cos 58°i + 10 sin 58° j = −5.299 i + 8.48 j ___› __› ∴ |a + b | = 24 units __› _› __ = 24 j ∴ p + q = ( 2 + 2√ 3 ) i + 0 j _› ( ) __› _› __ _› ___› _ __› › › 12 › ∴ a + b = 0i + 26 ___ j 13 _› __ _› __› __› _› = 2i + 2 j Q. 4. _› No i -component __ ___› ___› __› Direction is W 70° N. _› __› __› ∴ a + b = (10 − 26 cos a)i + 26 sin a j ⇒ A = 70° Q. 3. ___› b = − 26 cos a i + 26 sin a j 11 Tan A = ___ 4 ___› _› __› a = 10i i.e. |b | = 8 __› ___› __ _› _› ∴ a + b = 0i + 4√ 3 j __› ___› __ |a + b | = 4√ 3 units Q. 4. __› _› _› Q Q. 6. (i) p = 35 cos a i + 35 sin a j __ _ 3 › 4 › = 35 __ i + 35 __ j 5 5 __› = 21i + 28j __› _› () = − 3.420i + 9.397 j __› __› __› Let |s | = x ⇒ s = x i _› _› __› __› _› __› ___› a = 10 cos q i + 10 sin q j () () __› __ ___› ___› ( ) ___› _› _› _› _› _› _› 33 ∴ tan A = ___ = 1 33 ⇒ A = 45° _› Let |b | = x ⇒ b = −x j __› _ _ = 33i + 33 j = 8i + 6j ___› q (ii) ∴ p + q = 21i + 28 j + 12 i + 5 j 3 › 4 › = 10 __ i + 10 __ j 5 5 _› __› __› ( ) __› _ p A + 5 › 12 › = 13 ___ i + 13 ___ j 13 13 _› _› = 12 i + 5 j i.e. |s | = 3.420 __› → → q = 13 cos b i + 13 sin b j No i -component ⇒ x = 3.420 __› () ___› ∴ r + s = (−3.420 + x)i + 9.397j Q. 5. __› __› ___› i = − 10 cos 70° i + 10 sin 70° j _› _› ∴ a + b = 8i + (6 − x) j _› __› = k i + 0j ∴ x = 6 and k = 8 Q. 7. ___›_ _› __› r = − 3.42 i + 9.397j __› Let |s | = x __› _› _› __› __› ∴ s = x cos 10°i + x sin 10°j = 0.9848xi + 0.1736x j __› __› __› __› ∴ r + s = (−3.42 + 0.9848x)i + (9.397 + 0.1736x) j _› __› __› _› Since (r + s ) is in a NE direction, the i and j components must be equal. ∴ −3.42 + 0.9848x = 9.397 + 0.1736x ⇒ x = 15.8 Q Q. 8 8. ____› _______ ___› __________ ___ (i) |p | = √ 82 + 12 = √65 ___ |q | = √ (−7)2 + 42 = √65 ___› ___› ∴ |p | = |q | _› 1 __ (ii) “Slope” of p = _› = = m1 i -bit 8 4 4 “Slope” of q = ___ = − __ = m2 −7 7 1 m1 × m2 = −___ ≠ −1 14 ∴ Not perpendicular __› _______ ___ Q. 9. |−7i + j | = √ 49 + 1 = √ 50 _› _› __› ___›_ _› ___› a = 10 cos 80° i + 10 sin 80° j __› _› = 1.736 i + 9.848 j ___› Let |b | = x j -bit ____ _› Q. 10 10. Q ___› __› Therefore, b = xi __› ___› _› _› ∴ a + b = (1.736 + x)i + 9.848j ___› ___› Since the direction___ of (a + b ) is 21° 48’, ___› › the slope of (a + b ) must equal tan 21° 48’. 9.848 ∴ _________ = 0.4 1.736 + x ⇒ x = 22.88 _› |p(i + j )| = |pi + p j | _______ ____ = √ p2 + p2 = √ 2p2 ∴ 2p2 = 50 ⇒ p = 5 (sin ce p > 0) 5
© Copyright 2026 Paperzz