8th Grade Math 5.1 Homework: Rational Numbers Name:__________________________________ Period: ____ Write the following fractions as decimals. MEMORIZE THEM. They are Benchmark Factions. Next, graph them on the number line, labeling each one. It’s important to know where they are. 1) 1 4 = _____ 6) 1 8 2) 1 2 = _____ = _____ 7) 3 8 3) 3 4 = _____ = _____ 8) 5 8 4) 1 3 = _____ = _____ 9) 7 8 5) 2 3 = _____ = _____ 10. Graph each pair of numbers on the number line. Use the graph and write , , or to compare the numbers. Example: 11. 1.7 12. 0.09 13. 4.34 14. 11 15. 3.8 3 16. 1 3 4 8 16 0.65 4 5 Convert each fraction to a decimal, then determine if it’s decimal expansion is repeating or terminating. Transfer your answer to the table under the corresponding title. Example: 17. 22. 27. 1 25 7 = 0.04 18. 9 1 23. 3 2 28. 9 5 12 7 6 2 5 Terminating Decimal (it ends). 19. 24. 29. 5 8 5 99 3 8 13 20. 16 3 25. 26. 4 30 = 21. 1 4 31. 8 11 2 3 125 999 Repeating Decimals Terminating Decimals (those that repeat forever) (those that end) Fraction Decimal Fraction 1 25 Decimal 0.04 32. Look at the “Repeating Decimals” in the table above and their corresponding fractions. List the denominators of the fractions that are repeating decimals. What is similar about these denominators? 33. Google “What makes a repeating decimal repeat”, read the Wikipedia definition and describe which denominators will produce repeating decimals. Convert the following terminating decimals to fractions. Reduce to lowest terms. 34. 2.11 35. 0.345 36. - 0.75 37. 0.6 38. 0.125 39. 3.5 40. 5 41. 0.09 Decimals that repeat are also rational numbers. Follow these steps, and study the examples carefully to change each repeating decimal to a fraction. Step 1: Let 𝑥 equal the repeating decimal. Step 2: Multiply by powers of 1, 10, or 100 to create 2 equations that isolate the repeating part of the decimal. Step 3: Subtract the equations to remove the repeating part of the decimal. Step 4: Solve the resulting equation and simplify the fraction. Let 𝑥 = 0.333 … Let 𝑥 = 0.1666 … 10𝑥 = 3.333 … − 1𝑥 = 0.333 … 9𝑥 = 3 𝟑 𝟏 𝒙= = 𝟗 𝟑 100𝑥 = 16.666 … − 10𝑥 = 1.666 … 90𝑥 = 15 15 1 𝒙= = 90 6 Convert each repeating decimal to a fraction. Show all steps. Reduce to lowest terms. 42. 0.444 … 43. 0.1222… 45. 0. 6̅ 46. 0.151515…. 44. ̅ 0.05 47. 0.0707… Just for Fun: We have practiced converting decimals to fractions (see above). Now try converting this never-ending decimal to a fraction (hint: it does not repeat). 0.34307856940820… 5.1 Odd Answers 1. 0.25 3. 0.75 ̅ 5. 0.6 7. 0.375 9. 0.875 ̅ 17. 0.7 35. 19. 0.625 37. ̅̅̅̅ 21. 0.72 ̅ 23. 0.16 39. 41. 25. 0.75 ̅ 27. 0.2 29. 0.375 ̅̅̅̅̅ 31. 0.125 33. Look it up 43. 45. 47. 69 200 3 5 7 2 9 100 11 90 2 3 7 99
© Copyright 2026 Paperzz