COLLEGE ALGEBRA II (MATH 010) SUMMER 2015 HOMEWORK 2 SOLUTIONS 1. Solve using substitution. x − y = 1 4x + 3y = 18 Solution: x=1+y 4(1 + y) + 3y = 18 4 + 4y + 3y = 18 7y = 14 y=2 x=1+y =3 (3, 2) 2. Solve using elimination. 3x + 4y = 10 x − 4y = −2 Solution: 3x + 4y = 10 x − 4y = −2 4x = 8 x = 2 2 − 1 4y −4y y = −2 = −4 = 1 (2, 1) 3. Solve each system, or show that it has no solution. If it has infinitely many solutions express them in terms of a single parameter (t). (a) x + 4y = 8 3x + 12y = 2 (b) 2x − 6y = 10 −3x + 9y = −15 Solution: (a) −3x + −12y = −24 3x + 12y = 2 0 + 0 = −22 Inconsistent (b) 6x − 18y = 30 −6x + 18y = −30 0 + 0 = 0 Let x = t, so that 2t − 6y = 10, and y = − 35 + 3t . (t, − 53 + 3t ) 2 4. Solve the system, or show that it is inconsistent. x − y − z = 4 2y + z = −1 −x + y − 2z = 5 Solution: EQ1+EQ3=EQ3 x − y − z = 4 2y + z = −1 − 3z = 9 x − y − z = 4 2y + z = −1 z = −3 − 31 EQ3=EQ3 2y + (−3) = −1, y = 1 x − 1 − (−3) = 4, x = 2 (2, 1, −3) 5. Solve the system, or show that it is inconsistent. (a) y − 2z = 0 2x + 3y = 2 −x − 2y + z = −1 (b) x + 2y − z = 1 2x + 3y − 4z = −3 3x + 6y − 3z = 4 3 Solution: (a) EQ1↔EQ3 −x − 2y + z = −1 2x + 3y = 2 y − 2z = 0 2EQ1+EQ2=EQ2 −x − 2y + z = −1 − y + 2z = 0 y − 2z = 0 EQ2+EQ3=EQ3 −x − 2y + z = −1 − y + 2z = 0 0 + 0 = 0 Let z = t −y + 2t = 0, y = 2t −x − 2(2t) + t = −1, x = 1 − 3t (1 − 3t, 2t, t) (b) -3EQ1+EQ3=EQ3 x + 2y − z = 1 2x + 3y − 4z = −3 0 + 0 + 0 = 1 Inconsistent 4 6. Solve the system using row operations (augmented matrix). x − 2y + z = 1 y + 2z = 5 x + y + 3z = 8 Solution: 1 −2 1 1 0 1 2 5 1 1 3 8 R3−3R2=R3 → R3−R1=R3 → 1 −2 1 1 0 1 2 5 0 0 −4 −8 1 −2 1 1 0 1 2 5 0 3 2 7 − 1 R3 4 → 1 −2 1 1 0 1 2 5 0 0 1 2 z=2 y = 5 − 2z = 5 − 4 = 1 x = 1 + 2y − z = 1 + 2(1) − 2 = 1 (1, 1, 2) 7. Solve the system using row operations (augmented matrix). (a) x + y + z = 2 y − 3z = 1 2x + y + 5z = 0 (b) 2x − 3y − 9z = −5 x + 3z = 2 −3x + y − 4z = −3 5 Solution: (a) 1 1 1 2 0 1 −3 1 2 1 5 0 R3−2R1=R3 → R3+R2=R3 → 1 1 1 2 0 1 −3 1 0 −1 3 −4 1 1 1 2 0 1 −3 1 0 0 0 −3 Inconsistent (b) 2 −3 −9 −5 1 0 3 2 −3 1 −4 −3 R3+3R1=R3 → − 31 R2 → R1↔R2 → 1 0 3 2 2 −3 −9 −5 0 1 5 3 1 0 3 2 0 1 5 3 0 1 5 3 1 0 3 2 2 −3 −9 −5 −3 1 −4 −3 R2−2R1=R2 → R3−R2=R3 → Let z = t y = 3 − 5z = 3 − 5t x = 2 − 3z = 2 − 3t (2 − 3t, 3 − 5t, t) 6 1 0 3 2 0 −3 −15 −9 0 1 5 3 1 0 3 2 0 1 5 3 0 0 0 0 8. Perform the indicated operation, if possible. A= D= H= (a) AD Solution: (b) DA 2 −5 0 7 7 3 3 1 2 −1 (c) AH (a) Impossible (b) 7 3 2 −5 0 7 = 14 −14 (c) 2 −5 0 7 3 1 2 −1 = −4 7 14 −7 9. (a) Write as a matrix equation. (b) Calculate the determinant of the coefficient matrix. (c) Does the coefficient matrix have an inverse? Explain briefly. x + y + z = 6 2x − y − z = 3 x + 2y + 2z = 0 Solution: 7 (a) 1 1 1 2 −1 −1 1 2 2 x y z = 6 3 0 (b) (1) |A| = 2 −1 2 −1 −1 −1 + (1) − (1) 1 1 2 2 2 2 = (−2 + 2) − (4 + 1) + (4 + 1) = 0 (c) It is not invertible because |A| = 0. 10. Solve the system by converting to a matrix equation and using the inverse of the coefficient matrix. x − 4y = −2 −2x + y = −3 Solution: 1 −4 −2 1 x y = −2 −3 |A| = 1(1) − (−4)(−2) = −7 −1 A x y 1 1 4 =− 7 2 1 = − 71 − 47 − 72 − 17 8 = − 17 − 47 − 27 − 17 −2 −3 = 2 1 11. Solve using Cramer’s Rule. x + 2y = 7 5x − y = 2 Solution: 1 2 = −1 − 10 = −11 |D| = 5 −1 7 2 = −7 − 4 = −11 |Dx | = 2 −1 1 7 = 2 − 35 = −33 |Dy | = 5 2 x= y= |Dx | |D| |Dy | |D| = = −11 −11 −33 −11 =1 =3 9 12. Solve using Cramer’s Rule. x − y + 2z = 7 3x + z = 11 −x + 2y = 0 Solution: 7 −1 2 1 −1 2 3 0 1 , |Dx | = 11 0 1 |D| = 0 2 0 −1 2 0 1 −1 7 1 7 2 3 11 1 , |Dz | = 3 0 11 |Dy | = −1 2 0 −1 0 0 |D| = (1) 0 1 2 0 − (−1) 3 0 = 11 −1 2 |Dx | = (7) 11 1 11 0 0 1 = 30 − (−1) + (2) 0 0 0 2 2 0 |Dy | = (1) 11 1 3 1 3 11 −(7) = 15 +(2) −1 0 −1 0 0 0 |Dz | = (1) 0 11 3 11 3 0 −(−1) +(7) = 31 −1 −1 2 2 0 0 x= |Dx | |D| = 3 1 −1 0 + (2) 30 11 , y= |Dy | |D| = 10 15 11 , z= |Dz | |D| = 31 11 13. Use row operations to find ing matrix. 2 −1 A= 1 the inverse of the follow4 1 1 −1 4 0 Solution: 2 4 1 1 0 0 −1 1 −1 0 1 0 1 4 0 0 0 1 R1↔R3 → 1 4 0 0 0 1 −1 1 −1 0 1 0 0 −4 1 1 0 −2 R2−R3−>R2 → R1−4R2−>R1 → R2−R1−>R2 → 1 4 0 0 0 1 0 1 0 1 1 −1 0 −4 1 1 0 −2 1 4 0 0 0 1 −1 1 −1 0 1 0 2 4 1 1 0 0 R3+4R2−>R3 → A−1 = −4 −4 5 1 1 −1 5 4 −6 11 R3−2R1−>R3 → 1 4 0 0 0 1 0 5 −1 0 1 1 0 −4 1 1 0 −2 1 0 0 −4 −4 5 0 1 0 1 1 −1 0 0 1 5 4 −6 1 4 0 0 0 1 0 1 0 1 1 −1 0 0 1 5 4 −6 14. Solve the following system of equations. x2 + y 2 = 8 x + y = 0 Solution: Use substitution with x = −y: (−y)2 + (y)2 = 8 2y 2 = 8 y 2 = 4√ y=± 4 y = ±2 y=2 y = −2 x = −(−2) x = −2 (2, −2) (−2, 2) 15. Graph the inequality. x − y > 0 Solution: 4 y=x 3 2 1 0 −4 −3 −2 −1 0 −1 1 2 3 4 −2 −3 −4 Figure 1: x − y > 0 12
© Copyright 2026 Paperzz