Supporting Information Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography I. Yahya1‡, F. Bonaccorso2,3, S. Clowes1, A. C. Ferrari2, S. R. P. Silva1*. 1 Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK 2 Cambridge Graphene Centre, Cambridge University, Cambridge CB3 0FA, UK 3 Istituto Italiano di Tecnologia, Graphene Labs, 16163 Genova, Italy ‡ Currently at the Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Malaysia * Corresponding author email: [email protected] 1 1. Raman spectra for DIPS-CNTs (b) o Top band DIPS-CNT 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 514 nm Top band DIPS-CNT o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 514 nm G+ - G D Intensity (a.u.) Intensity (a.u.) (a) 100 150 200 250 300 1300 1400 1500 1600 1700 350 -1 -1 Raman Shift (cm ) Raman Shift (cm ) o 100 (d) 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 514 nm Bottom band DIPS-CNT o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 514 nm G+ - G D Intensity (a.u.) Bottom band DIPS-CNT Intensity (a.u.) (c) 150 200 250 300 -1 Raman Shift (cm ) 350 1300 1400 1500 1600 1700 -1 Raman Shift (cm ) Fi g. S1.1: Raman spectra of DIPS-CNTs separated at different temperatures; excitation wavelength 514 nm. (a) RBM and (b) D-G regions for top band; (c) RBM and (d) D-G regions for bottom band. 2 Top band DIPS-CNT (b) o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C Top band DIPS-CNT o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 633 nm G+ - G D Intensity (a.u.) 633 nm Intensity (a.u.) (a) 100 150 200 250 300 350 1300 1400 1500 1600 1700 -1 Raman Shift (cm ) -1 Raman Shift (cm ) o (d) 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 633 nm Bottom band DIPS-CNT o 633 nm G 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C + - G D Intensity (a.u.) Bottom band DIPS-CNT Intensity (a.u.) (c) 100 150 200 250 300 -1 Raman Shift (cm ) 350 1200 1400 1600 -1 Raman Shift (cm ) Fig. S1.2: Raman spectra of DIPS-CNTs separated at different temperatures; excitation wavelength 633 nm. (a) RBM and (b) D-G regions for top band; (c) RBM and (d) D-G regions for bottom band. 3 (a) Top band DIPS-CNT 782 nm o (b) o 6C o 18 C o 30 C o 50 C 10 C o 24 C o 40 C Top band DIPS-CNT o 782 nm G G - Intensity (a.u.) Intensity (a.u.) * D 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C + 100 150 200 250 300 350 1300 1400 1500 1600 1700 -1 -1 Raman Shift (cm ) o 782 nm (8,7) (12,1) Bottom band DIPS-CNT (12,4) (c) (13,13) (17,8) (18,3) (19,1) Raman Shift (cm ) 100 (d) Bottom band DIPS-CNT + 782 nm o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C G - G D Intensity (a.u.) Intensity (a.u.) * 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 150 200 250 300 -1 Raman Shift (cm ) 350 1300 1400 1500 1600 1700 -1 Raman Shift (cm ) Fig. S1.3: Raman spectra of DIPS-CNTs separated at different temperatures; excitation wavelength 782 nm. (a) RBM and (b) D-G regions for top band; (c) RBM and (d) D-G regions for bottom band. 4 2. Raman spectra for AD-CNTs o Top band AD-CNT (b) 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C o Top band AD-CNT 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C + 514 nm G - G D Intensity (a.u.) 514 nm Intensity (a.u.) (a) 100 150 200 250 300 350 1300 1400 1500 1600 1700 -1 -1 Raman Shift (cm ) (c) Raman Shift (cm ) o Top band AD-CNT 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 514 nm (d) Top band AD-CNT G o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C - Intensity (a.u.) Intensity (a.u.) D + G 514 nm 100 150 200 250 300 -1 Raman Shift (cm ) 350 1300 1400 1500 1600 1700 -1 Raman Shift (cm ) Figure S2.1: Raman spectra of AD-CNTs separated at different temperatures; excitation wavelength 514 nm. (a) RBM and (b) D-G regions for top band; (c) RBM and (d) D-G regions for bottom band. 5 o Top band AD-CNT 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C (b) Top band AD-CNT o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 633 nm - G + G D Intensity (a.u.) 633 nm Intensity (a.u.) (a) 100 150 200 250 300 350 1300 1400 1500 1600 1700 -1 -1 Raman Shift (cm ) o 100 (d) 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 633 nm Bottom band AD-CNT o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 633 nm + - G G D Intensity (a.u.) Bottom band AD-CNT Intensity (a.u.) (c) Raman Shift (cm ) 150 200 250 300 -1 Raman Shift (cm ) 350 1300 1400 1500 1600 1700 -1 Raman Shift (cm ) Fig. S2.2: Raman spectra of AD-CNTs separated at different temperatures; excitation wavelength 633 nm. (a) RBM and (b) D-G regions for top band; (c) RBM and (d) D-G regions for bottom band. 6 o Top band AD-CNT (b) 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C Top band AD-CNT + 782 nm o G 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C - G D Intensity (a.u.) 782 nm Intensity (a.u.) (a) 100 150 200 250 300 350 1300 1400 1500 1600 1700 -1 -1 Raman Shift (cm ) 100 band (d) Bottom AD-CNT o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 782 nm + 782 nm o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C G - G D Intensity (a.u.) Bottom band AD-CNT Intensity (a.u.) (c) Raman Shift (cm ) 150 200 250 300 -1 Raman Shift (cm ) 350 1300 1400 1500 1600 1700 -1 Raman Shift (cm ) Fig. S2.3: Raman spectra of AD-CNTs separated at different temperatures; excitation wavelength 782 nm. (a) RBM and (b) D-G regions for top band; (c) RBM and (d) D-G regions for bottom band. 7 3. Raman spectra of HiPco-SWNTs o Top band HiPco 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C (b) Top band HiPco - o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C G 514 nm - G D Intensity (a.u.) 514 nm Intensity (a.u.) (a) 100 150 200 250 300 350 1300 1400 1500 1600 1700 -1 -1 Raman Shift (cm ) Bottom band HiPco o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 514 nm 100 (d) Bottom band HiPco o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C + 514 nm G - G D Intensity (a.u.) Intensity (a.u.) (c) Raman Shift (cm ) 150 200 250 300 -1 Raman Shift (cm ) 350 1300 1400 1500 1600 1700 -1 Raman Shift (cm ) Fig. S3.1: Raman spectra of sample HiPco separated at different temperatures; excitation wavelength 514 nm. (a) RBM and (b) D-G regions for top band; (c) RBM and (d) D-G regions for bottom band. 8 o Top band HiPco 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C (b) Top band HiPco o 633 nm 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C + G - G D Intensity (a.u.) 633 nm Intensity (a.u.) (a) 100 150 200 250 300 350 1300 1400 1500 1600 1700 -1 -1 Raman Shift (cm ) o (d) 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 633 nm Top band HiPco D o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C + G 633 nm - G Intensity (a.u.) Bottom band HiPco Intensity (a.u.) (c) Raman Shift (cm ) 100 150 200 250 300 -1 Raman Shift (cm ) 350 1300 1400 1500 1600 1700 -1 Raman Shift (cm ) Fig. S3.2: Raman spectra of HiPco-SWNTs separated at different temperatures; excitation wavelength 633 nm. (a) RBM and (b) D-G regions for top band; (c) RBM and (d) D-G regions for bottom band. 9 o Top band HiPco (b) 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C Top band HiPco D o G 782 nm G 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C + - Intensity (a.u.) 782 nm Intensity (a.u.) (a) 100 150 200 250 300 350 1300 1400 1500 1600 1700 -1 -1 Raman Shift (cm ) o 100 (d) 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 782 nm Bottom band HiPco o + G 782 nm - D G 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C Intensity (a.u.) Bottom band HiPco Intensity (a.u.) (c) Raman Shift (cm ) 150 200 250 300 -1 Raman Shift (cm ) 350 1300 1400 1500 1600 1700 -1 Raman Shift (cm ) Fig. S3.3: Raman spectra of HiPco-SWNTs separated at different temperatures; excitation wavelength 782 nm. (a) RBM and (b) D-G regions for top band; (c) RBM and (d) D-G regions for bottom band. 10 4. Raman spectra of CoMoCAT-SWNTs o Top band CoMoCAT (b) 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C Top band CoMoCAT o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C + 514 nm G - G D Intensity (a.u.) 514 nm Intensity (a.u.) (a) 100 150 200 250 300 350 1300 1400 1500 1600 1700 -1 -1 Raman Shift (cm ) Bottom band CoMoCAT o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 514 nm 100 (d) 150 200 250 300 -1 Raman Shift (cm ) 350 Bottom band CoMoCAT G + o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 514 nm G Intensity (a.u.) Intensity (a.u.) (c) Raman Shift (cm ) - D 1300 1400 1500 1600 1700 -1 Raman Shift (cm ) Fig. S4.1: Raman spectra of CoMoCAT-SWNTs separated at different temperatures; excitation wavelength 514 nm. (a) RBM and (b) D-G regions for top band; (c) RBM and (d) D-G regions for bottom band. 11 o Top band CoMoCAT (b) 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C o Top band CoMoCAT 633 nm G+ - G D 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C Intensity (a.u.) 633 nm Intensity (a.u.) (a) 100 150 200 250 300 350 1300 1400 1500 1600 1700 -1 -1 Raman Shift (cm ) (c) Bottom band CoMoCAT Raman Shift (cm ) o 633 nm 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C (d) Bottom band CoMoCAT G o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C Intensity (a.u.) Intensity (a.u.) 782 nm - D 100 + G 150 200 250 300 -1 Raman Shift (cm ) 350 1300 1400 1500 1600 1700 -1 Raman Shift (cm ) Fig. S4.2: Raman spectra of CoMoCAT-SWNTs separated at different temperatures; excitation wavelength 633 nm. (a) RBM and (b) D-G regions for top band; (c) RBM and (d) D-G regions for bottom band. 12 o Top band CoMoCAT (b) 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C Top band CoMoCAT o G D 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 782 nm G + - Intensity (a.u.) 782 nm Intensity (a.u.) (a) 100 150 200 250 300 350 1300 1400 1500 1600 1700 -1 -1 Raman Shift (cm ) 100 (d) o 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C 782 nm Bottom band CoMoCAT o 782 nm 6C o 10 C o 18 C o 24 C o 30 C o 40 C o 50 C + G D - G Intensity (a.u.) Bottom band CoMoCAT Intensity (a.u.) (c) Raman Shift (cm ) 150 200 250 300 -1 Raman Shift (cm ) 350 1300 1400 1500 1600 1700 -1 Raman Shift (cm ) Fig. S4.3: Raman spectra of CoMoCAT-SWNTs separated at different temperatures; excitation wavelength 782 nm. (a) RBM and (b) D-G regions for top band; (c) RBM and (d) D-G regions for bottom band. 13 5. Relative SWNT concentrations in the top and bottom bands after separation Fig. S5: Ratio of optical absorption of the bottom band to the top band as a function of process temperature. The optical absorption is directly proportional to the SWNT concentration in the respective bands. Fig. S5 reports the variation of the optical absorption with respect to temperature for each sample at wavelengths corresponding to the optical transition boundaries, i.e. between the excitonic transitions. The absorbance at these wavelengths is the background contribution due to the carbon -plasmon, which is directly proportional to the SWNT concentration. 14
© Copyright 2025 Paperzz