Math 21B, Winter 2017 – Homework 7 Solutions Section 8.4 Z dx √ 1. 9 + x2 Solution. Let x = 3 tan(θ). Then dx = 3 sec2 (θ) dθ, so we have: Z Z Z Z 3 sec2 (θ) dθ 3 sec2 (θ) dθ dx √ p = = sec(θ) dθ = ln | sec(θ)+tan(θ)|+C = 3 sec(θ) 9 + x2 9 + 9 tan2 (θ) Since tan(θ) = x3 , we have that sec(θ) = √ 9+x2 . 3 As such: √ 9 + x2 + x ln | sec(θ) + tan(θ)| + C = ln +C 3 Z 4. 0 2 dx 8 + 2x2 Solution. Let x = 2 tan(θ). Then dx = 2 sec2 (θ) dθ. Furthermore, solving 0 = 2 tan(θ) gives θ = 0, while solving 2 = 2 tan(θ) gives θ = π4 , so we have: π Z π Z π Z π Z 2 4 4 2 sec2 (θ) dθ 4 1 θ 4 π dx 2 sec2 (θ) dθ = = = dθ = = 2 2 8 sec2 (θ) 4 0 16 0 8 + 2x 0 8 + 8 tan (θ) 0 0 4 Z 6. 1 √ 2 2 0 2 dx √ 1 − 4x2 Solution. Let 2x = sin(θ). Then 2 dx = cos(θ) dθ. Furthermore, solving 0 = sin(θ) gives θ = 0 and solving √12 = sin(θ) gives θ = π4 . Then we have: Z 0 Z 10. √ 1 √ 2 2 2 dx √ = 1 − 4x2 5 dx ,x> 25x2 − 9 Z 0 π 4 cos(θ) dθ p = 1 − sin2 (θ) Z 0 π 4 π 4 cos(θ) π dθ = θ = cos(θ) 4 0 3 5 Solution. Let 5x = 3 sec(θ). Then 5 dx = 3 sec(θ) tan(θ) dθ. This gives: Z Z Z Z 5 dx 3 sec(θ) tan(θ) dθ 3 sec(θ) tan(θ) √ p = = dθ = sec(θ) dθ 3 tan(θ) 25x2 − 9 9 sec2 (θ) − 9 √ 5x + 25x2 − 9 +C = ln | sec(θ) + tan(θ)| + C = ln 3 Z 23. 0 √ 3 2 4x2 dx (1 − x2 )3/2 Solution. Let x = √ sin(θ). Then dx = cos(θ) dθ. Furthermore, solving 0 = sin(θ) gives θ = 0 and solving 23 = sin(θ) gives θ = π3 . Then: √ Z 3 2 0 Z = 4x2 dx = (1 − x2 )3/2 π 3 0 Z 2 4 tan (θ) dθ = 0 Z 57. Evaluate π 3 Z 0 4 sin2 (θ) cos(θ) dθ = (1 − sin2 (θ))3/2 π 3 π 3 4 sin2 (θ) cos(θ) dθ cos3 (θ) 0 π √ 3 4π 2 4(sec (θ) − 1) dθ = 4 tan(θ) − 4θ = 4 3 − 3 0 Z √ x3 1 − x2 dx using: (a) Integration by parts √ Solution. Let u = 12 x2 and dv = 2x 1 − x2 dx. Then du = x dx and (using the substitution w = 1 − x2 ) v = − 23 (1 − x2 )3/2 . This gives: Z Z √ 1 2 3 2 2 3/2 x 1 − x2 dx = − x (1 − x ) + x(1 − x2 )3/2 3 3 Again using the substitution w = 1 − x2 , we obtain: Z 2 2 x(1 − x2 )3/2 dx = − (1 − x2 )5/2 + C 3 15 Therefore: Z √ 1 2 x3 1 − x2 dx = − x2 (1 − x2 )3/2 − (1 − x2 )5/2 + C 3 15 (b) Substitution Solution. Let u = 1 − x2 . Then du = −2x dx and x2 = 1 − u, so we have: Z Z Z √ √ √ 1 1 3 2 u3/2 − u du x 1 − x dx = − (1 − u) u du = 2 2 1 1 1 1 = u5/2 − u3/2 + C = (1 − x2 )5/2 − (1 − x2 )3/2 + C 5 3 5 3 (c) Trigonometric substitution Solution. Let x = sin(θ). Then dx = cos(θ) dθ, so we have: Z Z Z q √ 3 3 2 x 1 − x2 dx = sin (θ) 1 − sin (θ) cos(θ) dθ = sin3 (θ) cos2 (θ) dθ Let u = cos(θ). Then du = − sin(θ) dθ, so since sin2 (θ) = 1 − cos2 (θ), we have: Z Z Z u5 u3 3 2 2 2 4 2 − +C sin (θ) cos (θ) dθ = −(1 − u )u du = u − u du = 5 3 √ √ cos5 (θ) cos3 (θ) ( 1 − x2 )5 ( 1 − x2 )3 = − +C = − +C 5 3 5 3 Section 8.5 2x + 2 4. Expand 2 in partial fractions. x − 2x + 1 A B = x−1 + (x−1) Solution. By factoring x2 − 2x + 1 = (x − 1)2 , we can write x22x+2 2. −2x+1 Clearing denominators gives 2x + 2 = A(x − 1) + B. Then taking x = 1 gives B = 4 and taking x = 0 gives A = 2. As such, the partial fractions decomposition is x2 6. Expand z3 2 4 2x + 2 = + − 2x + 1 x − 1 (x − 1)2 z in partial fractions. − z 2 − 6z Solution. By factoring z 3 − z 2 − 6z = z(z 2 − z − 6) = z(z − 3)(z + 2), we can write B C z = Az + z−3 + z+2 . Clearing denominators gives z = A(z − 3)(z + 2) + Bz(z + z 3 −z 2 −6z 2) + Cz(z − 3). Then we can take z = 0 to get A = 0, z = 3 to get B = 15 , and z = −2 to get C = − 51 . As such, the partial fractions decomposition is z3 Z 10. 1 1 z = − 2 − z − 6z 5(z − 3) 5(z + 2) dx x2 + 2x 1 B Solution. We can write x2 +2x = Ax + x+2 . Then 1 = A(x + 2) + Bx, so taking x = 0 and x = −2 gives A = 21 and B = − 21 . As such: Z Z dx 1 1 1 1 x = − dx = (ln |x| − ln |x + 2|) + C = ln +C x2 + 2x 2x 2(x + 2) 2 2 x + 2 Z 17. 0 1 x3 dx x2 + 2x + 1 Solution. By polynomial divison, we have that x3 3x + 2 =x−2+ 2 2 x + 2x + 1 x + 2x + 1 A B We can then write x23x+2 = x+1 + (x+1) 2 which gives 3x + 2 = A(x + 1) + B. Then +2x+1 A = 3, and taking x = −1 gives B = −1. As such: Z 1 Z 1 x3 3 1 x − 2 + dx = − dx 2 x + 1 (x + 1)2 0 x + 2x + 1 0 1 1 x2 − 2x + 3 ln |x + 1| + = = 3 ln(2) − 2 2 x + 1 0 Z 39. et dt e2t + 3et + 2 Solution. Let x = et . Then dx = et dt, so we have: Z Z et 1 dt = dx 2t t 2 e + 3e + 2 x + 3x + 2 1 A B We can write x2 +3x+2 = x+1 + x+2 . Then 1 = A(x + 2) + B(x + 1), so taking x = −1 and x = −2 gives A = 1 and B = −1. As such: Z Z 1 1 1 dx = − dx = ln |x + 1| − ln |x + 2| + C x2 + 3x + 2 x+1 x+2 t x + 1 e + 1 + C = ln = ln et + 2 + C x + 2 Z √ 47. x+1 dx x Solution. Let x + 1 = u2 . Then dx = 2u du and x = u2 − 1, so we have: Z √ Z Z Z 1 x+1 u u2 dx = 2u du = 2 du = 2 1 + du x u2 − 1 u2 − 1 u2 − 1 A B We can write u21−1 = u−1 + u+1 . Then 1 = A(u + 1) + B(u − 1), so taking u = 1 and 1 u = −1 gives A = 2 and B = − 12 . As such: Z Z 1 1 1 du = 2 1 + − du = 2u + ln |u − 1| − ln |u + 1| + C 2 1+ 2 u −1 2(u − 1) 2(u + 1) √ u − 1 x + 1 − 1 √ + C = 2 x + 1 + ln √ = 2u + ln x + 1 + 1 + C u + 1
© Copyright 2026 Paperzz