VISHAY 6N137/ SFH6741 / 42 / 50 / 51 / 52 Vishay Semiconductors High Speed Optocoupler, 10 Mbd Features • Choice of CMR performance of 10 kV/µs, 5 kV/µs, and 100 V/µs • High speed: 10 Mbd typical • + 5 V CMOS compatibility • Guaranteed AC and DC performance over temperature: - 40 to + 100 °C Temp. Range • Pure tin leads • Meets IEC60068-2-42 (SO2) and IEC60068-2-43 (H2S) requirements • Low input current capability: 5 mA Agency Approvals • • • • • UL - File No. E52744 CSA 93751 DIN EN 60747-5-2 (VDE0884) DIN EN 60747-5-5 pending Available with Option 1 Dual channel Single channel NC A 1 8 2 7 C 3 6 NC 4 5 VCC VE VO GND 6N137, SFH6741, SFH6742 A1 1 8 C1 2 C2 3 7 6 A2 5 4 VCC VO1 VO2 GND SFH6750, SFH6751, SFH6752 18921 Order Information Part Remarks 6N137 100 V/µs, Single channel, DIP-8 6N137-X006 100 V/µs, Single channel, DIP-8 400 mil (option 6) 6N137-X007 100 V/µs, Single channel, SMD-8 (option 7) 6N137-X009 100 V/µs, Single channel, SMD-8 (option 9) Applications SFH6741 5 kV/µs, Single channel, DIP-8 Microprocessor System Interface PLC, ATE input/output isolation Computer peripheral interface Digital Fieldbus Isolation: CC-Link, DeviceNet, Profibus, SDS High speed A/D and D/A conversion AC Plasma Display Panel Level Shifting Multiplexed Data Transmission Digital control power supply Ground loop elimination SFH6741-X006 5 kV/µs, Single channel, DIP-8 400 mil (option 6) SFH6741-X007 5 kV/µs, Single channel, SMD-8 (option 7) SFH6741-X009 5 kV/µs, Single channel, SMD-8 (option 9) SFH6742 10 kV/µs, Single channel, DIP-8 SFH6742-X006 10 kV/µs, Single channel, DIP-8 400 mil (option 6) SFH6742-X007 10 kV/µs, Single channel, SMD-8 (option 7) SFH6742-X009 10 kV/µs, Single channel, SMD-8 (option 9) SFH6750 100 V/µs, Dual channel, DIP-8 SFH6750-X006 100 V/µs, Dual channel, DIP-8 400 mil (option 6) SFH6750-X007 100 V/µs, Dual channel, SMD-8 (option 7) Description The 6N137, SFH674x and SFH675x are single channel 10 Mbd optocouplers utilizing a high efficient input LED coupled with an integrated optical photodiode IC detector. For the single channel type, an enable function on pin 7 allows the detector to be strobed. The internal shield provides a guaranteed common mode transient immunity of 5 kV/µs for the SFH6741 and SFH6751 and 10 kV/µs for the SFH6742 and SFH6752. Document Number 82584 Rev. 1.1, 05-Jul-04 SFH6750-X009 100 V/µs, Dual channel, SMD-8 (option 9) SFH6751 5 kV/µs, Dual channel, DIP-8 SFH6751-X006 5 kV/µs, Dual channel, DIP-8 400 mil (option 6) SFH6751-X007 5 kV/µs, Dual channel, SMD-8 (option 7) SFH6751-X009 5 kV/µs, Dual channel, SMD-8 (option 9) SFH6752 10 kV/µs, Dual channel, DIP-8 SFH6752-X006 10 kV/µs, Dual channel, DIP-8 400 mil (option 6) SFH6752-X007 10 kV/µs, Dual channel, SMD-8 (option 7) SFH6752-X009 10 kV/µs, Dual channel, SMD-8 (option 9) www.vishay.com 1 6N137/ SFH6741 / 42 / 50 / 51 / 52 VISHAY Vishay Semiconductors Truth Table (Positive Logic) LED ON OFF ON ENABLE H H L OUTPUT L H H OFF ON OFF L NC NC H L H Absolute Maximum Ratings Tamb = 25 °C, unless otherwise specified Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability. Input Average forward current1) Parameter Symbol IF Value 20 Unit mA Average forward current2) Reverse input voltage IF 15 mA VR 5 V VE VCC + 0.5 V V Enable input voltage1) Enable input current1) Test condition IE 5 mA IFSM 200 mA Symbol VCC Value 7 Unit V Output current IO 50 mA Output voltage VO 7 V dissipation1) PO 85 mW Output power dissipation2) PO 60 mW Symbol Tstg Value - 55 to + 150 Unit °C Tamb - 40 to + 100 °C for 10 sec. 260 °C for 1 minute 260 °C 5300 VRMS Surge current t = 100 µs 1) Package: Single DIP-8 2) Package: Dual DIP-8 Output Parameter Supply voltage Output power 1) Package: Single DIP-8 2) Package: Dual DIP-8 Test condition 1 minute max. Coupler Parameter Storage temperature Test condition Operating temperature Lead solder temperature1) Solder reflow temperature2) Isolation test voltage 1) Package: DIP-8 through hole 2) Package: DIP-8 SMD www.vishay.com 2 t = 1.0 sec. VISO Document Number 82584 Rev. 1.1, 05-Jul-04 6N137/ SFH6741 / 42 / 50 / 51 / 52 VISHAY Vishay Semiconductors Recommended Operating Conditions Parameter Operating temperature Test condition Symbol Tamb Min - 40 Typ. Max 100 Unit °C VDD1, VDD2 4.5 5.5 V Input current low level IFL 0 250 µA Input current high level IFH 5 15 mA Logic high enable voltage VEH 2.0 VCC V Logic low enable voltage VEL 0.0 0.8 V Output pull up resistor RL 330 4K Ω 5 - Supply voltage RL = 1 kΩ Fanout N Electrical Characteristics Tamb = 25 °C, unless otherwise specified Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements. Input Parameter Input forward voltage Test condition IF = 10 mA Symbol VF Min 1.1 Input reverse breakdown voltage Input diode temperature coefficient Input capacitance Reverse current IR = 10 µA BVR 5 IF = 10 mA dVF/ dTA - 1.9 VR = 4.5 V CIN 55 pF IR 1 µA f = 1 MHz, VF = 0 V Typ. 1.4 Max 1.7 Unit V V mV/°C Output Parameter High level output current Input threshold current Test condition VE = 2.0 V, VO = 5.5 V, IF = 250 µA Symbol IOH VE = 2.0 V, VO = 5.5 V, IOL (sinking) = 13 mA, VCC = 5.5 V Low level output voltage High level supply current (single channel) High level supply current (dual channel) Low level supply current High level enable current Typ. 0.002 Max 1 Unit µA ITH 2.4 5.0 mA VE = 2.0 V, IF = 5 mA, IOL (sinking) = 13 mA, VCC = 5.5 V VOL 0.2 0.6 V VE = 0.5 V, IF = 0 mA, VCC = 5.5 V ICCH 4.1 7.0 mA VE = VCC, IF = 0 mA, VCC = 5.5 V ICCH 3.3 6.0 mA IF = 0 mA, VCC = 5.5 V ICCH 8.2 14.0 mA VE = 0.5 V, IF = 10 mA, VCC = 5.5 V ICCL 4.0 7.0 mA VE = VCC, IF = 10 mA, VCC = 5.5 V ICCL 3.3 6.0 mA VE = 2.0 V, VCC = 5.5 V IEH - 0.6 - 1.6 mA Document Number 82584 Rev. 1.1, 05-Jul-04 Min www.vishay.com 3 6N137/ SFH6741 / 42 / 50 / 51 / 52 VISHAY Vishay Semiconductors Parameter Low level enable current Test condition VE = 0.5 V, VCC = 5.5 V Symbol IEL Min VEH 2.0 High level enable voltage Low level enable voltage Typ. Max Unit - 0.8 - 1.6 mA V VEL 0.8 V Max 75* Unit ns 100 ns 75* ns Switching Characteristics Over Recommended Temperature (Ta = - 40 to + 100 °C), VCC = 5 V, IF = 7.5 mA unless otherwise specified. All Typicals at Ta = 25 °C, VCC = 5 V. Parameter Propagation delay time to high output level Test condition RL = 350 Ω, CL = 15 pF Symbol tPLH Min 20 Typ. 48 Propagation delay time to low output level RL = 350 Ω, CL = 15 pF tPHL 25 50 100 ns Pulse width distortion RL = 350 Ω, CL = 15 pF | tPHL - tPLH | 2.9 35 ns Propagation delay skew RL = 350 Ω, CL = 15 pF tPSK 8 40 ns Output rise time (10 - 90 %) RL = 350 Ω, CL = 15 pF tr 23 ns Output fall time (90 - 10 %) RL = 350 Ω, CL = 15 pF tf 7 ns Propagation delay time of enable from VEH to VEL RL = 350 Ω, CL = 15 pF, VEL = 0 V, VEH = 3 V tELH 12 ns Propagation delay time of enable from VEL to VEH RL = 350 Ω, CL = 15 pF, VEL = 0 V, VEH = 3 V tEHL 11 ns tPLH tPHL * JEDEC registered data for the 6N137 VCC 5V Single Channel Pulse Gen. Zo = 50 Ω t f = t r = 5 ns 1 IF 2 Input IF Monitoring Node RM 3 VCC 8 VE 7 VOUT 6 4 5 GND RL 0.1 µF Bypass IF = 7.5 mA IF = 3.75 mA 0 mA Input IF Output VO Monitoring Node VOL Output VO 1.5 V VOH C L = 15 pF tPLH The Probe and Jig Capacitances are included in CL tPHL 18964 Figure 1. Single Channel Test Circuit for tPLH, tPHL, tr and tf www.vishay.com 4 Document Number 82584 Rev. 1.1, 05-Jul-04 6N137/ SFH6741 / 42 / 50 / 51 / 52 VISHAY Vishay Semiconductors Pulse Gen. Zo = 50 Ω t f = t r = 5 ns +5V Dual Channel IF 1 VCC 8 2 7 3 6 4 5 RL Input Monitoring Node RM GND 0.1 µF Bypass Output VO Monitoring Node CL= 15 pF 18963 Figure 2. Dual Channel Test Circuit for tPLH, tPHL, tr and tf Input VE Monitoring Node Pulse Gen. Zo = 50 Ω t f = t r = 5 ns 1 7.5 mA IF VCC 5V Single Channel 2 3 VCC 8 VE 7 VOUT 6 RL 0.1 µF Bypass Output VO Monitoring Node C L = 15 pF 4 3V 1.5 V Input VE tEHL tELH Output VO 1.5 V 5 GND The Probe and Jig Capacitances are included in CL 18975 Figure 3. Single Channel Test Circuit for tEHL and tELH Document Number 82584 Rev. 1.1, 05-Jul-04 www.vishay.com 5 6N137/ SFH6741 / 42 / 50 / 51 / 52 VISHAY Vishay Semiconductors Common Mode Transient Immunity Parameter Common mode transient immunity (high) Test condition |VCM| = 10 V, VCC = 5 V, IF = 0 mA, Symbol | CMH | Min Typ. 10000 Max Unit V/µs | CMH | 5000 10000 V/µs | CMH | 10000 15000 V/µs 10000 V/µs VO(min) = 2 V, RL = 350 Ω, Tamb = 25 °C 1) |VCM| = 50 V, VCC = 5 V, IF = 0 mA, VO(min) = 2 V, RL = 350 Ω, Tamb = 25 °C 2) |VCM| = 1 kV, VCC = 5 V, IF = 0 mA, VO(min) = 2 V, RL = 350 Ω, Tamb = 25 °C 3) |VCM| = 10 V, VCC = 5 V, IF = 7.5 mA, | CML | VO(min) = 0.8 V, RL = 350 Ω, Tamb = 25 °C 1) |VCM| = 50 V, VCC = 5 V, IF = 7.5 mA, | CML | 5000 10000 V/µs | CML | 10000 15000 V/µs VO(min) = 0.8 V, RL = 350 Ω, Tamb = 25 °C 2) |VCM| = 1 kV, VCC = 5 V, IF = 7.5 mA, VO(min) = 0.8 V, RL = 350 Ω, Tamb = 25 °C 3) 1) For 6N137 and SFH6750 2) For SFH6741 and SFH6751 3) For SFH6742 and SFH6752 VCC IF 5V Single Channel 1 B A VFF 2 RL VCC 8 VE 7 VOUT 3 6 4 5 GND VCM + Pulse Generator ZO = 50 Ω 0.1 µF Bypass Output VO Monitoring Node VCM 0V VO 5 V VO 0.5V VCM (PEAK) Switch AT A: IF= 0 mA V O(min.) Switch AT A: IF = 7.5 mA VO(max.) CMH CML 18976 Figure 4. Single Channel Test Circuit for Common Mode Transient Immunity www.vishay.com 6 Document Number 82584 Rev. 1.1, 05-Jul-04 6N137/ SFH6741 / 42 / 50 / 51 / 52 VISHAY Vishay Semiconductors IF Dual Channel B +5V VCC 8 1 A V FF 2 7 3 6 RL Output VO Monitoring Node 0.1 µF Bypass 5 4 GND VCM + Pulse Generator ZO = 50 Ω 18977 Figure 5. Dual Channel Test Circuit for Common Mode Transient Immunity Safety and Insulation Ratings As per IEC60747-5-2, §7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits. Parameter Test condition Tracking resistance (Comparative Tracking Index) Symbol Min CTI 175 Creeapage Clearance Insulation thickness Typ. Max Unit 399 7 7 0.2 mm mm mm Typical Characteristics (Tamb = 25 °C unless otherwise specified) 1.60 IF = 20 mA 1.5 1.4 1.3 1.2 IF = 10 mA IF = 1 mA 1.1 1.50 1.45 1.40 1.35 1.30 1.25 1.20 1.15 1.0 –40 –20 17610 1.55 IF = 50 mA 1.6 V F – Forward Voltage ( V ) V F – Forward Voltage ( V ) 1.7 1.10 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) Figure 6. Forward Voltage vs. Ambient Temperature Document Number 82584 Rev. 1.1, 05-Jul-04 0 17611 5 10 15 20 25 30 35 40 45 50 IF – Forward Current ( mA ) Figure 7. Forward Voltage vs. Forward Current www.vishay.com 7 6N137/ SFH6741 / 42 / 50 / 51 / 52 VISHAY Vishay Semiconductors High Level Supply Current ( mA ) 17.2 16.8 16.6 16.4 16.2 16.0 15.6 CCh– V BR 15.8 15.2 –40 –20 I 15.4 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) 17612 Figure 8. Breakdown Voltage vs. Ambient Temperature 5 4 3 2 1 0 –40 –20 0 20 40 60 80 100 17616 Tamb – Ambient Temperature ( °C ) 3.1 3.0 2.9 2.8 –40 –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) 2.7 2.6 RL = 350 Q 2.5 2.4 RL = 4 kQ 2.3 2.2 RL = 1 kQ 2.1 –40 –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) 2.6 – Input Threshold OFF Current ( �-tA ) 4.0 3.5 3.0 VCC = 7 V IF = 10 mA VCC = 5 V IF = 10 mA 2.0 1.5 1.0 0.5 0.0 –40 –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) Figure 10. Low Level Supply Current vs. Ambient Temperature www.vishay.com 8 VCC = 5 V IF = 0.25 mA 3.2 Figure 12. Input Threshold ON Current vs. Ambient Temperature th I CCl – Low Level Supply Current ( mA ) Figure 9. Reverse Current vs. Ambient Temperature 17614 3.3 Figure 11. High Level Supply Current vs. Ambient Temperature I th – Input Threshold ON Current ( �-tA ) I R – Reverse Current ( nA ) 6 2.5 VCC = 7 V IF = 0.25 mA 3.4 2.8 7 17613 3.5 17615 I – Breakdown Voltage ( V ) 17.0 17617 2.5 2.4 RL = 350 Q 2.3 2.2 RL = 4 kQ 2.1 RL = 1 kQ 2.0 –40 –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) Figure 13. Input Threshold OFF Current vs. Ambient Temperature Document Number 82584 Rev. 1.1, 05-Jul-04 6N137/ SFH6741 / 42 / 50 / 51 / 52 VISHAY Vishay Semiconductors 0.25 5.5 VCC = 5.5 V IF = 5 mA IL = 16 mA IL = 13 mA 5.0 0.20 0.15 IL = 10 mA 0.10 IL = 6 mA 0.05 0.00 –40 –20 4.0 3.5 3.0 2.5 2.0 0 20 40 60 80 100 0 2 3 4 5 Figure 17. Output Voltage vs. Forward Input Current 50 40 30 20 10 0 –40 –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) 35 30 25 20 15 10 5 0 –40 –20 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) Figure 16. High Level Output Current vs. Ambient Temperature Document Number 82584 Rev. 1.1, 05-Jul-04 80 tPLH, 1 kΩ tPLH, 350 Ω 60 40 tPHL, 350 Ω 20 tPHL, 1 kΩ tPHL, 4 kΩ 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) 17622 Figure 18. Propagation Delay vs. Ambient Temperature 120 t P – Propagation Delay time ( ns ) 40 100 0 –40 –20 50 45 tPLH, 4 kΩ t P – Propagation Delay time ( ns ) I ol – Low Level Output Current ( mA ) 1 IF – Forward Input Current ( mA ) 120 IF = 5 mA IF = 10 mA Figure 15. Low Level Output Current vs. Ambient Temperature I oh – High Level Output Current ( nA ) RL = 4 kQ 17621 60 17620 RL = 1 kQ 1.0 Figure 14. Low Level Output Voltage vs. Ambient Temperature 17619 RL = 350 Q 1.5 0.5 0.0 Tamb – Ambient Temperature ( °C ) 17618 4.5 Vo – Output Voltage ( V ) Vol – Low Level Output Voltage ( V ) 0.30 tPLH, 4 kΩ 100 80 tPLH, 1 kΩ tPLH, 350 Ω 60 40 tPHL, 350 Ω tPHL, 1 kΩ 20 tPHL, 4 kΩ 0 5 17623 7 9 11 13 15 IF – Forward Current ( mA ) Figure 19. Propagation Delay vs. Forward Current www.vishay.com 9 6N137/ SFH6741 / 42 / 50 / 51 / 52 VISHAY Vishay Semiconductors 300 PWD – Pulse Width Distortion ( ns ) 50 t r,f – Rise and Fall Time ( ns ) tr, RL = 4 kΩ RL = 4 kΩ 40 30 20 RL = 1 kΩ 10 RL = 350 Ω 0 –40 –20 20 40 60 80 150 tf , RL = 350 Ω tf , RL = 1 kΩ tf, RL = 4 kΩ 100 tr, RL = 1 kΩ 50 100 tr, RL = 350 Ω 5 7 9 11 13 15 IF – Forward Current ( mA ) 17627 Figure 20. Pulse Width Distortion vs. Ambient Temperature Figure 23. Rise and Fall Time vs. Forward Current 60 50 RL = 4 kΩ 40 30 RL = 1 kΩ 20 10 RL = 350 Ω 0 5 7 9 11 13 15 IF – Forward Current ( mA ) 17625 t e – Enable Propagation Delay ( ns ) 60 PWD – Pulse Width Distortion ( ns ) 200 0 0 Tamb – Ambient Temperature ( °C ) 17624 250 17628 Figure 21. Pulse Width Distortion vs. Forward Current 50 teLH = 4 kΩ 40 30 20 teLH = 1 kΩ teLH = 350 Ω teHL = 350 Ω 10 teHL = 1 kΩ 0 –40 –20 0 20 teHL = 4 kΩ 40 60 80 100 Tamb – Ambient Temperature ( °C ) Figure 24. Enable Propagation Delay vs. Ambient Temperature 300 t r,f – Rise and Fall Time ( ns ) tr, RL = 4 kΩ 250 200 150 100 tr, RL = 1 kΩ 50 tr, RL = 350 Ω 0 –40 –20 17626 tf , RL = 350 Ω tf , RL = 1 kΩ tf, RL = 4 kΩ 0 20 40 60 80 100 Tamb – Ambient Temperature ( °C ) Figure 22. Rise and Fall Time vs. Ambient Temperature www.vishay.com 10 Document Number 82584 Rev. 1.1, 05-Jul-04 Document Number 82584 Rev. 1.1, 05-Jul-04 www.vishay.com 11 6N137/ SFH6741 / 42 / 50 / 51 / 52 VISHAY Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 www.vishay.com 12 Document Number 82584 Rev. 1.1, 05-Jul-04
© Copyright 2025 Paperzz