Partial Differentiation 1 d 2 (a) dx x = 2x (b) − sin2 x + cos2 x (c) cos xesin x 2 (a) 3 (a) fx = ex ey , fy = ex ey , fxx = ex ey , fxy = ex ey fyy = ex ey (d) fx = − sin x sin y, fy = cos x cos y, fxx = − cos x sin y, fxy = − sin x cos y, fyy = − cos x sin y (e) fx = sin y 2 , fy = 2xy cos y 2 , fxx = 0, fxy = 2y cos y 2 fyy = 2x cos y 2 − 4xy 2 sin y 2 (f) fx = ex+sin y , fy = cos y ex+sin y , fxx = ex+sin y , fxy = cos y ex+sin y , fyy = (cos y − sin y) ex+sin y 4 (a) ∇f = ex ex i + ex ey j (d) ∇f = (− sin x sin y)i + (cos x cos y)j (e) ∇f = (sin y 2 )i + 2xy cos y 2 j (f) ∇f = (i + cos yj) ex+sin y 5 (a) f (x, y) = 1 + x + y + 21 x2 + 2xy + y 2 + · · · (d) f (x, y) = 0 + y + 12 (0) + · · · (e) f (x, y) = 0 + 0 + 21 (0 + 0 + 0) + · · · (f) f (x, y) = 1 + x + y + 21 x2 + 2xy + y 2 6 In this answer we write x = x0 + h, y = y0 + k and expand in powers of h and k. (a) f (x, y) = ex0 +y0 1 + h + k + 21 h2 + 2hk + k 2 + · · · (d) f (x, y) = cos x0 sin y0 +(cos x0 cos y0 )k+(− sin x0 sin y0 )h− 12 cos x0 sin y0 h2 + k 2 − sin x0 cos y0 hk + · · · (e) f (x, y) = x0 sin y02 + sin y02 h + 2y0 x0 cos y02 k 2 2 + 2y0 cos y02 hk + xh0 cos y02 − 2x0 y02 sin y0 k + · · · i (f) f (x, y) = ex0 +sin y0 1 + h + cos y0 k + 7+8 (a) H f = (d) H f = x+y e ex+y h2 2 + cos y0 hk + ex+y . ex+y − sin x cos y . − cos x sin y − cos x sin y − sin x cos y 1 − sin y0 2 k 2 (e) H f = (f) H f = 2ycos y 2 . 2x cos y 2 − 4xy 2 sin y 2 0 2y cos y 2 ex+sin y cos y ex+sin y cos yex+sin y . (− sin y + cos y) ex+sin y Chain rule & stationary points 1 (a) fx = 1 + 2x, fy = 2y, fxx = 2, fxy = 0, fyy = 2. 2 Stationary point: fx = fy = 0 =⇒ (x, y) = (−1/2, 0). Here ∆ = fxx fyy −fxy = 4 > 0. Also fx x = 2 > 0 so this point is a minimum. (b) fx = 2x, fy = 1 − 2y, fxx = 2, fxy = 0, fyy = −2. 2 = Stationary point: fx = fy = 0 =⇒ (x, y) = (0, 1/2). Here ∆ = fxx fyy − fxy −4 < 0. Hence this pooint is a saddle. (c) Similar method gives maximum at (1, 1). (d) Maximum at (1/3, 1/3). (e) 5 points: (i) max at (0, 0), (ii) saddle at (0, 1), (iii) saddle at (0, −1), (iv) saddle at (1, 0), (v) saddle at (−1, 0). 2 ∇f = (2x, −2y). √ (a) Directional derivative is (2, √ √−2) · (1, 1)/ 2 = 0. (b) (−2, −2) · (1, 1)/ 2 = −2 2. (c) (0, −2) · (0, −1) = 2. (d) (2, 0) · (0, 1) = 0. 3 Two options: Method 1 Substitute for x andy into f to get f (t) = . . . and then differentiate. ∂f dx ∂f dy Method 2 Use the formulate df dt = ∂x dt + ∂y dt . (a) (b) (c) (d) df dt df dt df dt df dt = ∂f dx ∂x dt + ∂f dy ∂y dt = y(− sin t) + x(cos t) = − sin2 t + cos2 t. = 0. = 3t2 + 2t + 1. = −2t−3 . 4 The Jacobian matrix is given by ∂x ∂y 1 ∂u J = ∂u = ∂y ∂x −1 ∂v ∂v Then ∂f ∂u ∂f ∂v =J 2 ∂f ∂x ∂f ∂y 2u −2v ! . (a) If f = x2 − y, we have ∂f ∂x = 2x, ∂f ∂y = −1, and so ∂f ∂u = 2x − 2u = ∂f ∂v = −2x + 2v = −2u + 4v. 2(u − v) − 2u = −2v, ∂f 2 ∂f 2 (b) If f = xy 2 , we have ∂f ∂x = y , ∂y = 2xy, and so ∂u = y + 4xyu, −y 2 − 4xyv. ∂f y y (c) If f = ey sin x, we have ∂f ∂x = e cos x, ∂y = e sin x, and so ∂f ∂y = 2 2 ∂f = ey cos x + 2uey sin x = eu −v [cos(u − v) + 2u sin(u − v)] , ∂u 2 2 ∂f = −ey cos x + 2uey sin x = −eu −v [cos(u − v) − 2v sin(u − v)] . ∂v ∂f (d) If f = sin x sin y, we have ∂f ∂x = cos x sin y, ∂y = sin x cos y, and so ∂f = cos x sin y+2u sin x cos y = cos(u−v) sin u2 − v 2 +2u sin(u−v) cos u2 − v 2 , ∂u ∂f = − cos x sin y−2v sin x cos y = − cos(u−v) sin u2 − v 2 −2v sin(u−v) cos u2 − v 2 . ∂v 5 (a) ∂f = (cos θ + sin θ) er(cos θ+sin θ) , ∂r ∂f = r (− sin θ + cos θ) er(cos θ+sin θ) . ∂θ (1) (2) (d) ∂f = − cos θ sin (r cos θ) sin (r sin θ) + sin θ cos (r cos θ) cos (r sin θ) , ∂r ∂f = r sin θ sin (r sin θ) sin (r sin θ) + r cos θ cos (r cos θ) cos (r sin θ) . ∂θ (3) (4) (e) ∂f = cos θ sin r2 sin2 θ + sin θ2r cos θr sin θ cos r2 sin2 θ , ∂r ∂f = −r sin θ sin r2 sin2 θ + r cos θ2r cos θr sin θ cos r2 sin2 θ . ∂θ (5) (6) (f) ∂f = cos θer cos θ+sin(r sin θ) + sin θ cos (r sin θ) er cos θ+sin(r sin θ) , ∂r ∂f = −r sin θer cos θ+sin(r sin θ) + r cos θ cos (r sin θ) er cos θ+sin(r sin θ) . ∂θ 3 (7) (8)
© Copyright 2026 Paperzz