Supplement

 DMS Solubility:
In the Dacey et al. (1984) study there appears to be an error when converting the Henry’s Law coefficients. As a
result, the Bunsen (B) and Henry’s Law (H) values and equation are incorrect in the original paper. We
recommend using the dimensionless Ostwald solubility coefficient for DMS from Dacey et al. (1984), which
was described as a function of temperature (T, °K) in Saltzman et al. (1993):
ln(α) = -10.1794 + 3761.33(1/T)
Figure S1
(k660).
Equation S1
Equivalent to Figure 5 in main manuscript but with gas transfer velocities normalised to Sc=660
Figure S2
Replication of Figure 1 in the main manuscript. Axes in panel (e) are not restricted so that all
data is plotted.
Figure S3
Timeseries examples of relationship between 10 minute average and 4 hour average data: gas
transfer velocities for DMS and CO2 (upper panel); total whitecap fraction (middle panel); and Stage A
whitecap fraction (lower panel).
Figure S4
plotted.
Replication of Figure 5a and 5c in the main manuscript. Axes are unrestricted so that all data is
 kbub models:
  37

kbub  WC 
 10440 0.41Sc 0.24 
 

Asher et al. (2002) model (A02):
kbub 
Woolf (1997) model (W97):
Using f 
k bub, DMS
k bub,CO2
2450WC

 1  14Sc 0.5


1.2
1
1.2



we calculate f = 0.14 (A02) and f = 0.27 (W97). Using these estimates of f with Eqn. 6 (see
main text), we use Δkw to estimate kbub,CO2 . We also use the same kbub models to produce normalisation factors
(i.e. Fn = Model20°C / ModelInSituTemp) to convert the kbub,CO2 at in situ temperature (9.8°C) to a standard
temperature, 20°C ( kbub,CO2 , 20C ). Fn,A02 = 1.2754 and Fn,W97 = 1.3142.
Table S1: Knorr_11 cruise data (4 hour averaged). Minimum number of 10 minute average data points per 4
hour data interval = 3. kbub,CO2 is derived from Δkw using f and Eqn. 6 (main text). kbub,CO2 , 20C is calculated from
kbub,CO2 using Fn (see above).
kbub,CO2
kbub,CO2
kbub,CO2 , 20C
kbub,CO2 , 20C
Δkw
(cm hr-1)
-0.39
(A02,
cm hr-1)
-0.54
(W97,
cm hr-1)
-0.46
(A02,
cm hr-1)
-0.69
(W97,
cm hr-1)
-0.59
25.00
30.15
25.16
18.83
27.68
20.61
9.36
12.39
16.89
13.34
19.61
13.50
12.76
16.89
23.03
18.19
26.73
18.40
10.92
14.45
19.70
15.57
22.88
15.74
16.28
21.54
29.37
23.20
34.10
23.46
13.93
18.43
25.13
19.85
29.18
20.08
3.57
4.37
5.58
8.58
9.66
10.05
18.59
14.50
18.06
20.61
26.33
30.69
14.44
9.42
11.57
10.62
15.10
19.02
19.68
12.85
15.77
14.48
20.59
25.92
16.84
10.99
13.49
12.39
17.61
22.18
25.10
16.39
20.11
18.47
26.25
33.06
21.48
14.02
17.21
15.80
22.47
28.29
5.55
14.15
10.62
8.80
7.15
10.65
10.70
12.39
34.81
32.06
32.08
22.38
25.09
30.51
5.94
18.37
19.72
21.87
14.09
12.74
18.10
8.10
25.04
26.88
29.81
19.21
17.36
24.68
6.93
21.43
23.00
25.51
16.44
14.86
21.12
10.33
31.94
34.29
38.03
24.50
22.15
31.48
8.84
27.33
29.34
32.54
20.97
18.95
26.93
Wind Speed
(U10n)
6.72
Seawater
Temperature
(SST, °C)
18.12
kDMS
(cm hr-1)
8.75
(cm hr-1)
9.87
6.42
8.66
9.43
8.50
9.36
7.78
10.83
11.11
11.42
7.81
7.68
7.62
13.42
15.24
7.09
4.74
6.97
6.15
7.77
8.25
7.44
8.54
8.57
8.81
9.33
9.85
10.29
10.54
9.73
9.24
5.63
13.05
11.22
8.16
9.13
10.56
10.91
9.12
9.13
9.10
8.68
8.05
8.53
8.37
k CO2
11.13
11.10
11.53
10.97
8.48
8.28
8.78
8.87
9.84
9.10
13.25
12.89
34.04
25.58
39.39
46.43
22.64
15.04
24.02
31.47
30.86
20.50
32.74
42.90
26.40
17.54
28.02
36.71
39.36
26.14
41.76
54.71
33.68
22.37
35.73
46.82
10.77
7.89
10.48
8.12
7.31
5.85
9.11
9.08
9.42
9.54
9.53
9.51
15.72
11.41
15.71
9.11
7.91
4.91
28.24
21.92
29.61
16.05
15.23
9.61
9.99
8.67
11.35
5.47
6.04
3.90
13.62
11.83
15.47
7.45
8.24
5.32
11.65
10.12
13.24
6.38
7.05
4.56
17.37
15.08
19.73
9.51
10.51
6.79
14.86
12.91
16.89
8.14
8.99
5.81
4.43
3.69
9.77
9.09
7.73
3.31
9.48
9.57
9.65
9.45
9.55
9.45
3.13
2.28
17.32
16.93
11.14
2.36
8.62
8.91
27.97
21.25
13.25
6.25
4.98
6.27
7.84
1.58
0.30
3.51
6.79
8.55
10.69
2.16
0.41
4.78
5.81
7.31
9.14
1.84
0.35
4.09
8.66
10.90
13.63
2.75
0.53
6.10
7.41
9.33
11.66
2.35
0.45
5.22
9.65
10.24
11.41
10.66
8.89
6.93
11.57
10.81
10.46
10.61
10.81
10.86
9.54
13.57
7.36
5.91
6.16
5.98
23.18
29.90
31.24
24.94
25.18
14.73
12.06
14.10
22.67
18.06
18.00
7.76
16.43
19.22
30.91
24.62
24.54
10.59
14.06
16.45
26.45
21.06
21.00
9.06
20.96
24.51
39.42
31.40
31.30
13.50
17.94
20.98
33.73
26.87
26.78
11.55
5.82
4.84
10.67
15.58
12.70
15.16
10.84
10.81
10.82
10.76
10.68
10.65
4.59
3.65
6.09
8.26
7.76
8.15
8.47
8.12
24.19
35.45
22.94
33.65
3.12
3.86
17.09
25.83
13.90
24.15
4.25
5.27
23.30
35.22
18.95
32.93
3.64
4.51
19.94
30.14
16.22
28.17
5.42
6.72
29.72
44.92
24.18
41.99
4.64
5.75
25.43
38.44
20.69
35.93
16.96
19.25
16.74
14.14
13.98
13.54
10.59
10.48
10.40
10.41
10.34
9.91
8.36
8.63
7.14
8.36
7.91
7.23
50.35
69.16
47.24
41.64
40.09
29.58
40.61
59.12
38.93
31.91
30.88
21.17
55.37
80.59
53.07
43.50
42.10
28.86
47.38
68.96
45.41
37.22
36.02
24.69
70.61
102.78
67.69
55.48
53.69
36.80
60.42
87.95
57.92
47.48
45.94
31.49
10.30
10.16
5.82
22.94
16.18
22.05
18.87
28.12
24.07
References
Asher, W., Edson, J., McGillis, W., Wanninkhof, R., Ho, D. T., and Litchendor, T.: Fractional area whitecap
coverage and air-sea gas transfer velocities measured during GasEx-98, in: Gas Transfer at Water Surfaces,
American Geophysical Union, 199-203, 2002.
Dacey, J. W. H., Wakeham, S. G., and Howes, B. L.: Henry's law constants for dimethylsulfide in fresh water
and seawater, Geophysical Research Letters, 11, 991-994, 1984.
Saltzman, E. S., King, D. B., Holmen, K., and Leck, C.: Experimental determination of the diffusion coefficient
of dimethylsulfide in water, J Geophys Res-Oceans, 98, 16481-16486, 1993.
Woolf, D. K.: Bubbles and their role in gas exchange, in: The Sea Surface and Global Change, edited by: Liss,
P. S., and Duce, R. A., Cambridge University Press, Cambridge, 173-205, 1997.