Vidyalankar F.Y. Diploma : Sem. I Basic Mathematics Prelim Question Paper Solution 4 [2x 28] 3 [3x 7] + 9 [12 2] = 0 8x 112 9x + 21 + 108 18 = 0 x 1 = 0 x = 1 1 2 1. (b) x = , 3 4 34 65 = 9 1 12 3 7 11 3x + y = 8 9 al an 4 5 y = 1 3 1 2 4 5 3x + y = 3 3 4 1 3 3 6 4 5 = 9 12 1 3 ka dy 3 9 2 1. (c) A = A A = 1 9 (9)(9) (9)(9) 3.3 (9)(1) = (1)(3) (9)(1) (1)(9) (9)(9) 0 0 = 6 72 A2 = 0 0 6 72 = 0 Vi hence A2 is a singular matrix 1 1 3 2 = 1 1 B = 3 2 4 2 32 0 4 32 L.H.S. = A + B 3 2 1 1 3 2 1 1 L.H.S. = 0 4 32 4 2 32 1. (d) We have, 6 r 4 3 9 1. (a) Given: 3 2 7 = 0 1 4 x A 1013/FY/Pre_Pap/Maths_Soln Prelim Question Paper Solution 21 12 42 32 13 R.H.S. = 31 40 … (1) ka 2 1 L.H.S. = 4 1 4 2 32 R.H.S. = B + A 1 1 3 2 R.H.S. = 3 2 1 1 4 2 32 0 4 32 r 31 L.H.S. = 13 04 12 21 24 32 an 2 1 R.H.S. = 4 1 4 2 32 From eq. (1) and eq. (2) we get, L.H.S. = R.H.S. (A + B) = (B + A) is verified. … (2) dy 2 al 1 1 A B = = x x 1 1 x x x x Multiplying throughout by x (x 1), we get, 1 = A (x 1) + Bx 1. (e) Let When x = 1, 1 = 0 + B (1) When A = 1 Vi x = 0, 1 = A (0 1) + 0 1 1 1 = 2 1 x x x x B=1 1. (f) We know cos(A + B) = cos A cos B sin A sin B put A = B = , cos 2 = cos cos sin sin = cos2 sin2 2 2 But cos = 1 sin & sin2 = 1 cos2 = 1 2sin2 cos 2 = (1 sin2 ) sin2 2 2 cos 2 = cos (1 cos ) = 1 2 sin2 cos 2 = cos2 (1 cos2 ) = 2 cos2 1 1013/FY/Pre_Pap/Maths_Soln 7 Vidyalankar : F.Y. Diploma Mathematics 1. (g) Compound Angle The algebraic sum or difference of two or more angles is called compound angle. A B cos 2 = 80 (1) AB = 20 (2) 2A = 100 2B = 60 r A+B A = 50 B = 30 ka 1. (h) Given : 2 sin 40 cos 10 = sin A + sin B AB 2 sin 40 cos 10 = 2 sin 2 Equating both sides we get A B 40 = 2 A B and 10 = 2 equation (1) + equation (2) equation (1) equation (2) cos 21 sin21 cos 21 sin21 Dividing numerator and denominator by cos 21°, we get, 1 tan21 = 1 tan21 tan45 tan21 = [ tan 45° = 1] 1 tan45 tan21 tan A tanB = tan (45° 21°) 1 tan A tanB tan A B = tan 24° = R.H.S. al an 1. (i) L.H.S. = dy 1 1 1. (j) L.H.S. = tan1 7 + tan1 13 In this case, 1 Let x = > 0, 7 1 1 1 1 > 0 and xy = = <1 13 7 13 91 xy L.H.S. = tan1 1 xy Vi y= 1 1 7 13 = tan1 1 1 1 7 13 9 = cot1 2 = R.H.S. 8 1013/FY/Pre_Pap/Maths_Soln 13 7 91 = tan1 1 1 91 20 / 91 = tan1 90 / 91 2 = tan1 9 1 tan1 cot 1 x x Prelim Question Paper Solution 1. (k) Let the lines be 3 3 = and 2 2 2 2 2 : 2x 3y 7 = 0 Its slope, m2 = = 3 3 It is the a cute angle between lines, then m1 m2 tan = 1 m1.m2 1 : 3x 2y + 4 = 0 Putting, m1 = 3/2, m2 = 2/3, we get, 3 2 94 6 2 3 tan = = 2 3 2 1 2 3 5 = tan1 12 5 12 ka r Its slope, m1 = = an 1. (l) Range = largest Quantity smallest Quantity = 31 1 = 30. al 2. (a) Then writing into D, Dx, Dy and Dz as required in Cramer’s Rule, we have 3 3 1 D = 2 1 2 4 3 2 33 dy = 3(2 6) 3(4 8) 1(6 + 4) = 24 + 12 10 11 3 = = 3(8) 3(4) (10) 22 1 D x = 0 1 2 25 3 2 Vi = 11(2 6) 3(0 50) 1(0 + 25) = 88 + 150 25 = = 11(8) 3(50) 1(25) 37 = = 150 11(4) 1(50) 200 + 44 3 11 1 Dy = 2 0 2 4 25 2 = 3(0 50) 11(4 8) 1(50) = 150 + 44 50 = 156 1013/FY/Pre_Pap/Maths_Soln 9 Vidyalankar : F.Y. Diploma Mathematics 3 3 11 Dz = 2 1 0 4 3 25 al A 2 3 3 1 AB = 3 5 3 2 4 AB = 8 1 2 23 dy r 2 3 3 1 2 = and B = 1 5 22 1 0 0 23 L.H.S. = (AB)T 2 3 3 1 2 AB = 1 5 22 1 0 0 23 2. (c) We have Now 5 3 7 7 7 1 an (x 4) (5 27) 7 2. (b) LHS = = (3x 4) (152y) 1 Comparing a11 and a12 x+4=5 x=1 5 + 2y = 3 y = (35) / 2 = 4 = 75 150 + 110 = 115 ka = 3(25 0) 3(50 0) + 11(6 + 4) = 75 40 Then by Cramer’s rule, D 37 37 x = x = = 22 D 22 Dy 156 156 = y = = D 22 22 Dz 115 115 z = = = D 22 22 37 78 115 x= , y= , and z = 22 11 22 2 0 4 0 1 0 2 0 Vi 3 8 = L.H.S. (AB) = 2 1 4 2 32 T … (1) We have, 10 A 2 3 = 1 5 22 B 3 1 2 = 1 0 0 23 R.H.S. = BT A T 1013/FY/Pre_Pap/Maths_Soln … (1) 2 AT = 3 3 T B = 1 2 1 5 2 1 0 0 23 Prelim Question Paper Solution From eq. (1) and eq. (2) we get L.H.S. = R.H.S. (AB)T = BT A T is proved. 1 4 0 0 5 3 8 0 5 8 0 … (i) 2 4 1 1 BT = 2 3 AT = 3 5 , 1 0 4 0 2 1 4 1 T T A + B = 3 2 5 3 1 4 0 0 dy 1 A+B = 5 1 T (A + B) = 5 3 4 0 al Now, 1 2 B= 1 3 2 1 3 2 A+B = 4 1 5 3 an 2 3 1 2. (d) A = 4 5 0 … (2) r 6 3 3 5 R.H.S. = 2 0 1 0 4 0 2 0 3 8 R.H.S. = 2 1 4 2 32 ka 3 1 2 1 R.H.S. = 1 0 3 5 22 2 0 32 1 5 = 5 8 3 0 Vi T T A +B … (ii) From (i) and (ii) (A + B)T = AT + BT 2. (e) x5 x 3 x 2 6x = = x5 x x2 x 6 x5 x(x 2)(x 3) 1013/FY/Pre_Pap/Maths_Soln 11 Vidyalankar : F.Y. Diploma Mathematics A B C x x2 x3 5 x5 5 = = = 6 (x 2)(x 3) x 0 (2)(3) = = x5 x(x 3) x 2 = 3 (2)(5) C = x5 x(x 2) x 3 = 8 8 = 3.5 (3)(5) 3x 2 x 1 x 2 1 = 3x 2 x 1 x 1 x 1 = A B C 2 x 1 x 1 x 1 = = 3 25 = 3 10 = 8 15 3x 2 x 1 2 x 1 ka 2. (f) Let B r A Multiplying throughout by (x + 1)2 (x 1), we get, 3x + 2 = A (x + 1) (x 1) + B (x 1) + C (x + 1)2 3 + 2 = 0 + 0 + C (2)2 4C = 5 an When x = 1, When x = 1, 3 + 2 = 0 + B (1 1) + 0 2B = 1 C = 5/4 B = 1/2 dy al When x = 0, B = 1/2, C = 5/4 1 5 2 = A (1) (1) + (1) + (1)2 2 4 1 5 2 = A 2 4 5 1 528 5 A = 2 = = 4 2 4 4 3x 2 5 1 5 = 4 x 1 2 x 1 2 4 x 1 x 1 x 2 1 Vi 1 3 2 be the given matrix. 3. (a) Let A = 3 2 5 2 3 6 33 1 3 2 A = 3 2 5 2 3 6 33 12 A = 1[(6) (2) (5) (3)] 3[(3) (6) (2) (5)] + 2[(3) (3) (2)(2)] A = [12 + 15] 3[18 10] + 2[9 + 4] A = 3 3(8) + 2(5) 1013/FY/Pre_Pap/Maths_Soln Prelim Question Paper Solution A = 3 24 10 A = 31 A 0 A1 exists c1 c2 c3 33 r To find A1: 1 3 2 a1 b1 = a 2 b2 Let A = 3 2 5 2 3 6 33 a 3 b3 C1 = A2 = = (18 10) 2 6 3 2 2 3 3 2 3 6 1 2 2 6 = 8 = 9 + 4 = 5 = (18 (6)) = 24 =64 =2 al B2 = 3 5 an B1 = ka Let A1, B1 and C1 ….. are cofactors of elements a1, b1, c1…. respectively. 2 5 A1 = = 12 + 15 =3 3 6 C2 = 3 2 2 5 = (3 6) =9 = 15 + 4 = 19 = (5 6) =1 = 2 9 = 11 dy A3 = + 1 3 2 3 B3 = 3 5 1 3 3 2 Vi C3 = + 1 2 8 5 A1 B1 C1 3 The matrix of cofactors = A 2 B2 C2 = 24 2 9 A 3 B3 C3 19 1 11 3 adj A = Transpose of cofactors matrix 3 24 19 adj A = 8 2 1 5 9 11 3 1013/FY/Pre_Pap/Maths_Soln 13 Vidyalankar : F.Y. Diploma Mathematics A We have 3 24 19 1 1 8 = adjA = 2 1 31 A 5 9 11 … (1) x + 3y + 2z = 6 3x 2y + 5z = 5 2x 3y + 6z = 7 are given equations. Writing in matrix form, we get 1 3 2 x 3 2 5 y 2 3 6 z 6 = 5 7 ka r 1 6 5 7 3 an 1 3 2 x X = y B = A = 3 2 5 2 3 6 33 z 3 We have AX = B X = A1B From eq. (1), eq. (2) and eq. (3), we get, x 3 24 19 6 1 5 8 = y 2 1 31 11 33 7 31 5 9 z 31 al x 31 1 y = 31 31 62 31 z 31 dy 18120133 x 1 y = 48107 31 304577 z 31 33 x 1 y = 1 z 31 2 31 x = 1, y = 1, z = 2 which is required answer. Vi 3. (b) We have, x 2 23x x 3 x 14 2 x 3 x = 1 x 2 23x 2 = 1 A x 3 Bx C x 1 2 A x 2 1 Bx C x 3 x 3 x 2 1 x2 + 23x = A(x2) + A + Bx2 + 3Bx + Cx + 3C 1013/FY/Pre_Pap/Maths_Soln … (2) … (3) Prelim Question Paper Solution x2 + 23x = (A + B)x2 + x(3B + C) + A + 3C Equating corresponding coefficient (A + B) = 1 (3B + C) = 23 A + 3C = 0 From eq. (3), we get, A = 3C From eq. (1) and eq. (4) we get 3C + B = 1 B = 1 + 3C From eq. (2) and eq. (5), we get 3(1 + 3C) + C = 23 3 + 9C + C = 23 10C = 20 C =2 From eq. (4) and eq. (6), we get A = 6 From eq. (1) and eq. (7) we get B = 7 2 6 7x 2 x 23x = 2 2 x 3 (x 1) (x 3)(x 1) … (1) … (2) … (3) … (4) ka r … (5) 2 = 7x 2 2 (x 1) A B tan 1 = (tan 2)(tan3) tan2 tan 3 tan1 1 here A = = tan3 tan2 1 dy 3. (c) Let B = … (8) 6 which are required partial fraction. x 3 al (x 3) (x 1) … (7) an x 2 23x … (6) tan1 tan 2 tan3 = 2 1 = 1 =2 hence, Vi 1 2 tan 1 = tan 2 tan 3 (tan 2)(tan 3) 3. (d) We know cos(A + B) = cos A cos B + sin A sin B put A = , = B 2 cos = cos cos sin sin hence 2 2 2 = 0 + 1 sin cos = sin 2 1013/FY/Pre_Pap/Maths_Soln 15 Vidyalankar : F.Y. Diploma Mathematics 3. (e) L.H.S. = L.H.S. = sinAsin2Asin3Asin4A cosAcos2Acos 3A cos4A sinAsin4A sin2Asin3A cosAcos4A cos 2Acos3A 4A A A 4A 3A2A 2A 3A 2 sin cos 2 sin cos 2 2 2 2 L.H.S. = A 4A A 4A 2A 3A 2A 3A 2 cos cos 2 cos cos 2 2 2 2 ka r 5A 3A 5A A 2 sin cos sin cos 2 2 2 2 L.H.S. = 5A 3A 5A A 2 cos cos 2 cos 2 cos 2 2 1 cos 2A = sin2A cos 2A 1 al 1 sec 2A 3. (f) L.H.S. = tan2A an 5A 3A A sin cos cos 2 2 2 L.H.S. = 5A 3A A cos cos cos 2 2 2 5A L.H.S. = tan 2 L.H.S. = R.H.S. Hence proved. cos 2A1 sin2A = cotA = R.H.S. = 1 cos 2A sin2A dy = 4. (a) L.H.S. = = 2 cos2 A cos A = 2 sin A.cos A sin A 1 tan2A tanA 1 tan2A tanA Vi sin2A sin A cos 2A cos A sin2A sin A cos 2A cos A cos 2A cos A = = sin2A sin A cos 2A cos A sin2A sin A 1 cos 2A cos A cos 2A cos A cos 2A cos A sin2A sin A = cos 2A cos A sin2A sin A 1 4. (b) 16 L.H.S. = sin 3A L.H.S. = sin(2A + A) L.H.S. = sin2A cos A cos 2A sin A L.H.S. = (2 sin A cos A) cos A + [cos2 A – sin2 A] sin A 1013/FY/Pre_Pap/Maths_Soln Prelim Question Paper Solution L.H.S. L.H.S. L.H.S. L.H.S. L.H.S. L.H.S. = 2sin A cos2 A + (cos2 A sin2 A) sin A = 2 sin A (1 – sin2 A) + (1 – sin2 A – sin2 A) sin A = 2 sin A – 2 sin3 A + (1 – 2 sin2 A) sin A = 2sin A 2sin3A + sin A 2sin3A = 3sin A 4 sin3A = R.H.S. Hence proved. 4. (c) L.H.S. = sin 20. sin 40. sin 60. sin 80 = = = [2 sin 20. sin 40] .sin 80 [Multiplying and dividing by 2] ka = 3 4 3 4 3 4 3 4 3 8 [cos (20° 40°) cos (20° + 40°)] . sin80° [(cos 20° cos 60°) . sin80°] [cos 20° sin 80° cos 60° sin 80°] an = 3 sin60 2 3 . sin 80 2 r = sin 20. sin 40. 1 sin 80°] 2 [Multiplying and dividing by 2 and cos 60° = 1/2] [2 cos 20° sin 80° 2. 3 [sin (20° + 80°) sin (20° 80°) sin 80°] 8 = 3 [sin 100° + sin 60° sin 80°] 8 al = 3 [sin 80° + sin 60° sin 80°] 8 [ sin 100° = sin (2 90° 80°) = sin 80°] dy = [ sin (60°) = sin 60°] = 3 (sin 60°) 8 3 3 8 2 3 = = R.H.S. 16 Vi = 4. (d) L.H.S. = cosec A cosec A + cosec A-1 cosec A+1 cosecA+1+cosecA-1 = cosecA cosec 2 A 1 1 1 = cosecA cosecA-1 cosecA+1 cosecA 2cosecA = cot 2 A 1013/FY/Pre_Pap/Maths_Soln 17 Vidyalankar : F.Y. Diploma Mathematics 2cosec 2 A 2 sin2 A . = cot 2 A sin2 A cos2 A 2 = cos2 A = 2sec2A = R.H.S. L.H.S. = L.H.S. = al L.H.S. = ka L.H.S. = cotcosec cotcosec1 cos 1 1 sin sin cos 1 1 sin sin cos1 sin cos1 sin 2 cos2 2 sin cos 2 2 2 2 2 sin 2 sin cos 2 2 2 2 cos cos sin 2 2 2 2 sin sin cos 2 2 2 an 4. (e) L.H.S. = r = cos 2 sin 2 cos sin 2 2 dy L.H.S. 2 = 2 sin 2 cos 2 = sin 2 = cot 2 = R.H.S. 2 cos L.H.S. Vi L.H.S. L.H.S. 4 5 L.H.S. = cos1 5 sin1 13 4. (f) 4 Let cos1 5 = 1 18 Hence proved. sin21 = 1 cos2 1 sin 1 = 3 5 1013/FY/Pre_Pap/Maths_Soln cos 1 = = 1 16 25 4 5 = 9 25 Prelim Question Paper Solution Also, Let cos22 5. (a) 144 169 5 13 12 cos 2 = 13 sin 2 = cos (1 2) = cos 1 cos 2 + sin 1 sin 2 48 15 4 12 3 5 = = 65 65 5 13 5 13 63 1 2 = cos1 65 4 5 63 cos1 sin1 = cos1 5 13 65 = 63 65 L.H.S. = L.H.S. = sinA 1 cos A 1 cos A sin A sin2 A 1 cos2 A sin A 1 cos A ka = an = 2 r Next 5 sin1 13 25 =1 169 sin2 A sin2 A sin A 1 cos A L.H.S. = 2 sin2 A sin A 1 cos A al L.H.S. = L.H.S. = sin A 1 cos A 2 1 cos A 1 cos A sin A 1 cos A dy L.H.S. = 2 1 cos2 A Vi 1 cos A L.H.S. = 2 sin A L.H.S. = 2 [cosec A cot A] L.H.S. = R.H.S. Hence proved. 5. (b) We know sin(A + B) = sin A cos B + cos A sin B A = C/2, B = D/2 C D C D C D sin = sin cos cos sin 2 2 2 2 2 cos(A B) = cos A cos B + sin A sin B Similarly, C D C D C D cos = cos cos sin sin 2 2 2 2 2 ... (1) ... (2) 1013/FY/Pre_Pap/Maths_Soln 19 Vidyalankar : F.Y. Diploma Mathematics Multiplying (1) and (2); CD C D sin cos 2 2 C D C D D C = 2 sin cos cos2 cos2 cos sin 2 2 2 2 2 2 C D D D C C sin2 cos sin sin2 cos sin 2 2 2 2 2 2 r Multiplying by 2 throughout : C D C D 2 sin cos 2 2 C D C D = sin cos cos sin 2 2 2 2 C D C D cos cos sin sin 2 2 2 2 ka C D D C = 2 sin cos cos2 sin2 2 2 2 2 D D C C cos cos2 sin2 2 2 2 2 D C C D = 2 sin cos sin cos 2 2 2 2 sin C D C D 2 sin cos 2 2 We know 2 sin cos = sin 2. C D C D hence 2 sin cos = [sin D + sin C] = RHS 2 2 hence proved. cotAcot2A cotAcot 2A cosA cos2A L.H.S. = sinA sin2A cosA cos2A sinA sin2A al L.H.S. = dy 5. (c) an L.H.S. = cosA sin2A cos 2A sin A sin 2AA sin 2AA Vi L.H.S. = cosA sin2A cos 2A sin A sinA sin3A L.H.S. = R.H.S. ( sin (A + B) = sin A . cos B + cos A sin B and sin(A B) = sin A cos B cos A sin B) L.H.S. = Hence proved. 5. (d) We have, L1 : 2x + 3y = 13 L2 : 2x 5y = 7 are given equation of straight lines. Let m1 and m2 be slopes of line given by eq. (1) and eq. (2) 20 1013/FY/Pre_Pap/Maths_Soln … (1) … (2) Prelim Question Paper Solution 2 2 and m2 = 3 5 If ‘’ be the acute angle between lines, then m1 m2 tan = 1 m1 m2 We get m1 = = tan = tan = tan = = r tan ka = al tan 10 6 15 15 4 15 16 15 11 15 16 11 16 11 16 11 16 tan1 11 an tan 2 2 3 5 = 2 2 1 3 5 dy 5. (e) Consider P (x1, y1) = P (5, 4) and the line is 2x + y + 6 = 0. Vi The perpendicular distance from P(x1, y1) on ax + by + c = 0 is ax by1 c = 1 a 2 b2 where a = 2, b = 1, c = 6 x1 = 5, y1 = 4 2 5 1 4 6 10 4 6 20 = = = 5 5 4 1 = 4 5 units. 5. (f) Let P(x, y) divide the join of A (+5, 4) and B (2, 3) in the ratio K: 1 m = K and n = 1 Using external division formula, mx 2 nx1 my 2 ny1 Px = and Py = mn mn 1013/FY/Pre_Pap/Maths_Soln 21 Vidyalankar : F.Y. Diploma Mathematics K 2 1 5 K 1 2K 5 Px = K 1 K 3 1 4 K 1 3K 4 = K 1 Py = Px = Py ka an 6. (a) Let for the line, x-intercept = a y- intercept = b Given : a = 2b r P (x, y) divides the x-axis, Py = 0 0 = 3K + 4 K = +4/3 8 4 2 5 5 3 3 Px = = 4 1 1 3 3 = 23 4 The ratio is : 1 and the point is (23, 0). 3 The equation of line in two intercept form is, x y =1 a b dy al Putting a = 2b, we get, x y multiplying throughout by 2b. = 1, 2b b x + 2y = 2b (i) This line passes through the point (4, 1) Putting x = 4, y = 1, we get, 4 + 2 (1) = 2b 2b = 6 b=3 a = 2b = 6 Putting b = 3 in equation (1), x + 2y = 2 (3) x + 2y = 6 This is the required line. Vi 6. (b) A(3, 4) (x1, y1) P(x3, y3) Q(x4, y4) B(2, 3) (x2, y2) Let P(x3, y3) and Q(x4, y4) be the points of trisection for the join A(3, 4) and B(2, 3) Then we observe from fig. that the point P(x3, y3) divides the join AB internally in the ratio 1 : 2. m = k, n = 2k k 0, k R Using internal division formula for x and y we get, mx 2 nx1 my 2 ny1 Px = and Py = mn mn 22 1013/FY/Pre_Pap/Maths_Soln Prelim Question Paper Solution = k 3 2k 4 r k 2k 3k 8k = 3k 5k = 3k 5 = 3 ka Putting values of m, n, x1, y1, x2, y2 we get k 2 2k 3 Px = Py k 2k 2k6k Py Px = 3k 4k Py = Py 3k 4 P2 = Py 3 4 5 P(x3, y3) = , 3 3 Now point Q(x4, y4) is the midpoint of PB. 4 2 3 Qy Qx = 2 46 Qy Qx = 3 2 2 3 Qy Qx = 2 2 Qx = Qy 6 1 Qx = 3 1 2 Q = (x4, y4) = , 3 3 an 5 3 3 = 2 4 = 3 2 4 6 2 = 3 dy al = hN c.f. F2 C.I. F 4 9.5 14.5 6 14.5 19.5 10 19.5 24.5 5 24.5 29.5 7 29.5 34.5 3 34.5 39.5 9 39.5 44.5 6 44.5 49.5 N = 50 Median class = 24.5 29.5 h=5 F = freq. of median class = 5. C.f. = 20 Vi 6. (c) M = L CF 4 10 20 25 32 35 44 50 1013/FY/Pre_Pap/Maths_Soln 23 Vidyalankar : F.Y. Diploma Mathematics Substituting 5 2520 5 = 24.5 + 5 = 29.5 Median = 24.5 + = 11 xi x n fixi x = fi 60150350810495195 50 2515551525 = 50 MD = 1 2 fi xi x n Coefficient of variance = 100 , where = 5D = |x| Variance x = = al 6. (f) 3625 3625 2000 50 90 = 50 = an 6. (e) M D = = r LS LS 11 = 61 Coefficient of Range = ka 6. (d) Range = L S = 36 25 = 40 = 9 5 Variance fixi fi (9)(15) (17)(45) (75)(43) (105)(82) (195)(24) (135)(81) (165)(44) 300 = 118.7 1 2 Variance = fi xi x n 1 9(15 118.7)2 17(45 118.7)2 43(75 118.7)2 = 300 Vi dy = 82(105 118.7)2 81(135 118.7)2 24(195 118.7)2 = 1492.90 Coefficient of variance = 100 x = Variance 100 118.7 = 32.54 24 1013/FY/Pre_Pap/Maths_Soln
© Copyright 2026 Paperzz