2/24/16 Name Exam 2 - Derivatives Find f 0 (x). 1. f (x) = e2 =) f 0 (x) = 0 The 2’s should be 3’s below ⇡x2 =) f 0 (x) = 2⇡x 2. f (x) = 3. f (x) = x2 tan x =) f 0 (x) = 2x tan x + x2 sec2 x 4. f (x) = 4e x 9 ln x =) f 0 (x) = + sec x 4e x + sec x tan x 9 x 5. f (x) = (2x4 3e2x +sin x)7 =) f 0 (x) = 7(2x4 3e2x +sin x)6 (8x3 6e2x +cos x) 6. 5 f (x) = p = 5x x 1/2 =) f 0 (x) = 5 ✓ 7. f (x) = (ln x)2 =) f 0 (x) = 2(ln x) 8. 1 2 ◆ x 3/2 5 p 2x x = ✓ ◆ 1 2 ln x = x x f (x) = sec3 x =) f 0 (x) = 3 sec2 x(sec x tan x) = 3 sec3 x tan x 9. f (x) = esec 3 x =) f 0 (x) = 3 sec3 x tan xesec 3 x 10. f (x) = ln(sec3 x) =) f 0 (x) = 3 sec3 x tan x = 3 tan x sec3 x 11. f (x) = x2 sec 1 x =) f 0 (x) = 2x sec x+x2 ✓ (x3 )+x ✓ 1 1 x x2 p 1 ◆ = 2x sec 1 x+ p x x2 1 12. f (x) = x sin 1 (x3 ) =) f 0 (x) = sin 1 p 13. f (x) = 37 ln x =) f 0 (x) = 37 ln x (ln 3) 14. f (x) = 1 1 x6 ◆ (3x2 ) = sin 1 (x3 )+ p ✓ ◆ 7 (7 ln 3)37 ln x = x x ex 1 ex (ex + 1) ex (ex =) f 0 (x) = ex + 1 (ex + 1)2 1) = 2ex (ex + 1)2 15. f (x) = x3 3x2 cos x ( sin x)x3 3x2 cos x + x3 sin x =) f 0 (x) = = cos x cos2 x cos2 x 16. f (x) = y = x3x ! ln y = ln(x3x ) = 3x ln x di↵erentiate ln y = 3x ln x . . . y0 = 3 ln x + 3x y ✓ ◆ 1 = 3 ln x + 3 x Now solve for y 0 . . . f 0 (x) = y 0 = (3 + 3 ln x)y = (3 + 3 ln x)x3x 3x3 1 x6 17. f (x) = 7x3 tan x tan f 0 (x) = 21x2 tan x tan 18. f (x) = p x2 19. 1 1 x =) x + 7x3 sec2 x tan 1 =) f 0 (x) = 1 2 (x 2 1 1/2 1) x+ 7x3 tan x 1 + x2 (2x) = p x x2 p x2 1 sec 1 x =) p 1 x sec sec 1 x + s2 1 · p = p 1 x x2 1 x2 1 f (x) = f 0 (x) = p x x2 20. f (x) = y = ln y = ln 3 ln y = ln(x ) + ln e ✓ x3 e4x 1 p ln(4x 1) x2 x e p ln(4x 1) x2 4x 1 ln y = 3 ln x + 4x 3 4x 1 1 ln(ln(4x ln(ln(4x 1 1)) 1)) 1 ◆ ln ⇣p 1 x 1 + x 1 ⌘ 1 x2 1 ln(x2 2 1) Now di↵erentiate . . . y0 3 = +4 y x y0 3 = +4 y x 1 ln(4x · 1) 4x 4 (4x 4 1) ln(4x 1 1 2x · 2 x2 1 x 1) x2 1 0 Now solve for y . . . ✓ ◆ 3 4 x y0 = +4 y x (4x 1) ln(4x 1) x2 1 ✓ ◆ 3 4 x x3 e4x 1 p y0 = +4 2 x (4x 1) ln(4x 1) x 1 ln(4x 1) x2 1
© Copyright 2025 Paperzz