Lake Superior’s Lower Trophic Levels Mary Balcer University of Wisconsin – Superior Presented at Making a Great Lake Superior Conference Fisheries and Aquatic Ecology Section October 2007 Contributors Great Lakes National Program Office University of WI Superior David Rockwell Mary Balcer Kurt Schmude Travis Mangan Steve Hagedorn Heidi Schaeffer Heidi Saillard Mid-Continent Ecology Division Jack Kelly Peder Yurista Fisheries Management Goal Maintain Balance Between Density of Predators and Prey Components of Food Web Physical Features Temperature Light Predators Salmonids Phytoplankton Crustacean Zooplankton Cladocerans Copepods Planktivorous Forage Fish Nutrients Phosphorus Benthos Diporeia Limiting Factors in Lake Superior Cold Water temperatures Spring Water Temperatures 4 Temperature (C) 3.5 3 2.5 2 1.5 1 0.5 0 2001 2002 2003 2004 Superior 2005 2006 Spring Water Temperatures 4.5 Temperature (C) 4 3.5 3 2.5 2 1.5 1 0.5 0 2001 2002 2003 Superior 2004 Michigan 2005 Huron 2006 Summer Water Temperatures Temperature (C) 25 20 15 10 5 0 2001 2002 2003 2004 Superior Offshore 2005 2006 Nearshore Summer Water Temperatures Temperature (C) 25 20 15 10 5 0 2001 2002 Superior 2003 2004 Huron 2005 Michigan 2006 Limiting Factors in Lake Superior Cold water temperatures Low Levels of Nutrients Effects on Food Web Physical Features Temperature Light Predators Salmonids Phytoplankton Crustacean Zooplankton Cladocerans Copepods Planktivorous Forage Fish Nutrients Phosphorus Benthos Diporeia Effects on Food Web Physical Features Temperature Light Predators Salmonids Phytoplankton Nutrients Phosphorus Crustacean Zooplankton Cladocerans Copepods Benthos Diporeia Planktivorous Forage Fish Spring Phosphorus Levels 7 Total P (ug P/L) 6 5 4 3 2 1 0 2001 2002 2003 Superior 2004 2005 Spring Phosphorus Levels 7 Total P(ug/L) 6 5 4 3 2 1 0 2001 2002 Superior 2003 Huron 2004 2005 Michigan Limiting Factors Cold Water temperatures Low Levels of Nutrients Lead to lower primary productivity Chlrophyll a (ug/L) Spring Chlorophyll 2 1.5 1 0.5 0 2001 2002 Huron 2003 2004 Superior 2005 Michigan 2006 Lake Superior Chlorophyll Chlorophyll (ug/L) 2 1.5 1 0.5 0 2001 2002 2003 summer 2004 spring 2005 2006 Phytoplankton Community Structure Chlorophyll concentrations don’t show complexity of phytoplankton communities Distinct differences in phytoplankton species composition and biomass in Great Lakes each year 8 7 6 5 Relative abundance (%) 4 3 2 1 0 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 3 2 1 0 Total phosphorus concentration (µg/L) Euan Reavie Spring Phytoplankton Biomass from Integrated Samples Phytoplankton Community 80,000 70,000 Biomass (ug/m3) 60,000 50,000 40,000 30,000 20,000 10,000 0 2001 2002 2003 2004 Superior Centric Diatoms Cryptophytes Pennate Diatoms Cyanophytes Chlorophytes Dinoflagellates Chrysophytes Others Spring Phytoplankton Biomass Total Biomass (ug/m3) 250,000 200,000 150,000 100,000 50,000 0 2001 2002 Superior 2003 2004 Michigan Huron Phytoplankton Community Summer Phytoplankton Biomass from Integrated Samples 350,000 Biomass (ug/m3) 300,000 250,000 200,000 150,000 100,000 50,000 0 2001 2002 2003 2004 Superior Centric Diatoms Cryptophytes Pennate Diatoms Cyanophytes Chlorophytes Dinoflagellates Chrysophytes Others Zooplankton community Depends on phytoplankton abundance and species composition Certain types of zooplankton are important food for fish Relative size of common zooplankton Cladocerans Cyclopoid Copepods Calanoid Copepods Relative size of common zooplankton Cladocerans Cyclopoid Copepods Diporeia Calanoid Copepods Mysis Opossum shrimp GLERL photo gallery Community Composition Spring Zooplankton Density 1,400 1,200 3 Density (#/m ) 1,000 800 600 400 200 0 2001 Daphnia Adult Cyclopoids 2002 2003 Bosminids Immature Calanoids 2004 Other Cladocerans Adult Calanoids 2005 2006 Immature Cyclopoids Density (#/m3) Spring Zooplankton Density 8,000 7,000 6,000 5,000 4,000 3,000 2,000 1,000 0 2001 2002 2003 SUPERIOR 2004 MICHIGAN 2005 HURON 2006 Lake Superior - Spring 2001 1000 3 Biomass (ug/m ) 1200 800 Adult Calanoids Imm Calanoids Adult Cyclopoids Imm Cyclopoids 600 400 200 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 0 Length (mm) Summer Zooplankton Density 5,000 4,500 Density (#/m 3) 4,000 Adult Calanoids Imm Calanoids Adult Cyclopoids Imm Cyclopoids Other Cladocerans Bosminids Daphnia 3,500 3,000 2,500 2,000 1,500 1,000 500 0 2001 2002 2003 2004 2005 2006 Summer Zooplankton Density Density (#/m3) 25,000 20,000 15,000 10,000 5,000 0 2001 2002 Superior 2003 2004 Michigan 2005 Huron 2006 Lake Superior - Summer 2001 2000 Adult Calanoids Imm Calanoids Adult Cyclopoids Imm Cyclopoids Other Cladocerans Bosminids Daphnia 1500 1000 500 Length (mm) 3.3 3 2.7 2.4 2.1 1.8 1.5 1.2 0.9 0.6 0.3 0 0 Biomass (ug/m 3) 2500 Lake Superior - Summer 2006 2500 3 Biomass (ug/m ) 2000 Adult Calanoids Imm Calanoids Adult Cyclopoids Imm Cyclopoids Other Cladocerans Bosminids Daphnia 1500 1000 500 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 0 Length (mm) Nearshore Zooplankton Summer 2005 30,000 Density (#/m3) 25,000 Ad Calanoids imm cal ad Cyc imm cyc bytho other cla daphnia bosminid 20,000 15,000 10,000 5,000 SN95 SN127 SN143 SN103 SN07 SN147 SN159 SN35 SN19 SN99 SN29 SN109 SN102 SN135 SN13 SN145 SN81 SN101 SN33 SN129 SN17 SN97 0 Threats to Lower Food Web Introduction of non non--native species Competitors Predators Invertebrate Predators Bythotrephes and Cercopagis Invertebrate predators would select smaller or slower prey - cladocerans Changes in Food Web Physical Features Temperature Light Predators Salmonids Phytoplankton Crustacean Zooplankton Cladocerans Copepods Bythotrephes Cercopagis Forage Fish Coregonids Nutrients Phosphorus Benthos Diporeia Dreissenid mussels Zebra and quagga mussels Filter algae and small zooplankton Change flow of nutrients to offshore regions of lakes Changes in Food Web Physical Features Temperature Light Predators Salmonids Phytoplankton Crustacean Zooplankton Cladocerans Copepods Forage Fish Coregonids Nutrients Phosphorus Benthos Diporeia Dreissenid mussels Diporeia Abundance Lake Superior Diporeia - Moderate depths 2000 1800 Density (#/m2) 1600 1400 1200 1000 800 600 400 200 0 97 98 99 00 01 02 03 04 05 06 Diporeia Abundance Diporeia Abundance # m-2 Lake Superior Diporeia Density at Deep Stations 2000 1800 1600 1400 1200 1000 800 600 400 200 0 97 98 99 00 01 02 Year 03 04 05 06 Summary Lake Superior is an oligotrophic lake Cool temperatures and low nutrients limit primary production Chlorophyll and phytoplankton concentrations are lower than in other Great Lakes Lake Superior’s phytoplankton community is quite diverse Summary Offshore zooplankton density and biomass are lower than in other Great Lakes Communities are dominated by large calanoid copepods which prefer cold water A few cladocerans appear in summer NearNear-shore zooplankton populations are more variable in density and composition Summary Offshore Diporeia density is low Abundance is greater at moderate depths These regions can serve as nursery areas for fish Summary Low abundance of nonnon-native predatory cladocerans Dreissenid mussels are not established in open lake Lake Superior’s lower food web is not showing the major changes in composition that are occurring in the other Great Lakes
© Copyright 2026 Paperzz