Mth 65 Exam 1 Practice Franz Helfenstein Name Be prepared to neatly show your work. Plan to use a pencil, simplify your results and box in your answers! Scratched out pen marks and other such messiness will reduce your score. a) T F True or False. Circle T if always true otherwise circle F. (a + b) = a3 + b3 j) T F If P(x) = 3x2 + 2x – 1 then P(-1) = 0 b) T F (a – b)2 = a2 – ab + b2 k) T F ( 2 + x)( 2 – x) = 2 – x2 c) T F (-2)5 = 32 l) T F 2a2b(a2 + 3ab) = 2a4b + 6a3b2 m) T F x2 + 4 x =x+4 n) T F -x(2y – 3x – 5) = -2xy +3x2 + 5x 3 d) T F (-4)(13) + 52 = DNE 77 e) T F x-3 · x7 = -x10 f) T F x2 + y2 = x + y o) T F Quadratics are Second Order g) T F (3x)3 – x(5x)2 x =4 42 – 23 p) T F 1 y = x2 + 4x – 5 is a parabola h) T F a(x·y) = (ax)(ay) q) T F (Quadratic) x (Cubic) is 6th Order i) T F 9x2 – (3x)2 =0 6 – 2·3 r) T F 4 3 7 + 2 = x x x3 2) P(x) = 2x2 + 5x – 7 (a) P(t) = (b) P(-2) = (c) P(2) + 2x – 4 = (d) P(x+1) = (e) [P(x) + 1]2 = (f) 4[P(x+2)] = (g) x2 P(x) – 5x4 = 3) Q(2,-3) + 3 Q(x, y) = 3x2 – 5xy + 4y2. Evaluate 2 Q(0,1) = 4) (a) Solve for x: 3(2 – x) – x = 4 (b) Solve for H: 2(3H – 2) = 4H + 6 1 x 1 (c) Solve for x: 3 + 2 = 4 (d) Solve for x: 5) Simplify: 6x5 – 4x3 (2x2 – 3x3) = 6) Simplify: x(6x·y + 3 x2 y) – 4(2x2 y + 3 x3 y) = 7) Simplify: (4x5 + 3x3 – 5x2 + 3x + 2) + (9x5 – 11x4 – 7x2 – 3x + 5) = 8) Simplify: (-7x3 – 5x2 + 13x + 2) – (-11x3 – 7x2 – 3x + 5) = 3ax + 1 = 2x + b a Multiply & Simplify 9) (2x + 3)(4x – 7) = 10) (5x2 – 7x)(3x3 – 5x + 2) = 11) (x – 1)(x2 + x + 1) = 12) 3x3 (3x3 – 5x + 2) – (5x2 – 7)(2x4 + 3x) = 13) (2x + 3)3 = 14) (2x + 3)2(4x – 7) = 15) Given Q2(x) = x2 – 3x + 1 simplify in standard form: Q2(x+1) = 16) Multiply and Simplify: [2x2 y3 – 3x3 y2 ]2 = 10x5 – 4x3 (3x3 – 5x2) = 6x3 x3 – 14x + 15 19) Divide: = x–3 17) Simplify: 18) 20) 6x2 – 7x – 3 = 2x – 3 8x3 + 6x2 – 11x – 3 Divide: = 2x – 1 Divide: 21) Simplify to all positive exponents: a) a2 b4 a5 a3 b12 20 = b) a-3 a5 a-4 b-3 b6 b-1 = c) a2 (a5)2 (b12)3 = d) (a3b4)2 (a3b2)4 = e) (a2b3)3 (ab4)2 = (a4b2)2 (a3b2)4 f) a2 a15 a3 b2 b b6 = a5 a7 a b10 b2 b4 g) a-2 b5 c4 x-3 y-3 z-1 = a3 b7 c9 x-5 y6 z8 h) (a-2b1)3 (2ab-3)-2 = (2a-3b2)-2 (a3b2)4 i) 2x2y3(xy2 - x2y + 2x2) = j) [(x2y5z4)3]2 = k) (x5 - y3)3 = l) 2x3(7x5 – 4x4 + 3x3 – 2x2 + 9x + 1) = m) 24 x y2 (22 x2 y2)5 (23 x4 y)4 = n) 23 x6 y-5 (2-2 x-1 y2)3 = o) (x4 y-2)-3 z0 = x9 (y-2 z3)-6 p) x12 (y-5 z11)2 = (x9 y-3)-2 z8 q) x7 y-2 z4 (x-2 y4)-3 = r) 2x7 y-2 z4(3x6y-5 + 4x-1 y2) = s) 2x3y2z4(2xy5z5 – 3x2yz4 + 7x2y3z) = t) (2x2y5z4 – 3x3y7z3)(3xy2y2z) = 22) Write in scientific notation: (a) 3.2 Megawatts = __watts (b) 5 nanosecond = __ sec. 23) Give your answer in scientific notation with 2 decimal digits: (i.e. x.xx · 10±n) 356 (a) 93,000,000 (b) -0.0000021 (c) 12 (d) -342 (e) 1000 = (f) 7 billion (-2.28 x 10-2) (1.64 x 104) 102 + 2.5·104 + 3.6(2.4·104 + 7.1·104) g) = h) = (-3.28 x 10-3) (7.64 x 103 ) 5 – 4.2 + 2.2(3.53 + 8.1) i) k) 2.98 · 103 + 9.75 · 102 = x= b – b2 – 4ac 2a j) (-2.28 x 10-2) (1.64 x 104) = -3.28 x 103 + 9.64 x 102 Find x given: a = -1.23·101, b = -3.45·105, c = 5.67·104 24) Make a T-table then plot the points and sketch the graph for P(x) = -x3 + 25x 10 25) The Falling Body Model, H(t) = -16 t2 + v0 t + h0 , gives the height, H (in feet), as a function of time, t (in seconds). v0 represents the initial velocity and h0 represents the initial height. (a) An arrow is shot upward from ground level with initial velocity of 380 ft/sec. What is the height after 5 seconds? (b) A ball is thrown upward at 60 ft/sec from the top of a 120 ft tall building. How far is the ball from the ground after 4 seconds? 1 26) Divide to show that 1 – x = x0 + x1 + x2 + x3 + x4 + . . . 1 1 27) Using the results from problem 26 should 1 – x · 1 + x = x0 + x2 + x4 + x6 + x8 + . . . ?
© Copyright 2026 Paperzz