arXiv:hep-ph/9603318v1 16 Mar 1996 Y ER PH I-1449(19)-95 T EC H N IO N -PH -96-1 hep-ph/9603318 CP-Violation in theD ecay b! s in theLeft-RightSym m etric M odel H .M .A satriana,A .N .Ioannissiana;b a Yerevan Physics Institute,A likhanyan Br. 2,Yerevan,A rm enia b D ept. ofPhysics,Technion - IsraelInst. ofTech.,H aifa,Israel e-m ail: asatryan@ vx1.yerphi.am ,ioannissyan@ vxc.yerphi.am A bstract T he directC P-violation in the left-rightsym m etric SU (2) SU (2) U (1) m odelis investigated for the decay b ! s . T he calculated C P-asym m etry for the w ide range ofparam eters can be larger than in standard m odeland can have an opposite sign. Yerevan Physics Institute Yerevan 1995 T he experim ental and theoretical investigation of the decay b ! s can give a sign for a new physics in the TeV region [1]. T his decay has been extensively studied during the last years. T he rst experim entalevidence was obtained at C LEO for the exclusive decay B ! K [2]. T he decay b ! s has been investigated theoretically for the standard m odeland its extensions [3]-[11]. C P-violation in B B system was considered in [12]. In this paper we consider the C P asym m etry in the decay b! s forthe left-right sym m etric SU (2) SU (2) U (1) m odel,w hich is one of the sim plest extensions of the standard m odel. C alculated value ofC P-asym m etry forsom e range ofparam eters ofthe m odel(the m ass ofthe right W -boson,the ratio oftwo H iggs doublet vacuum expectation values,phasesand m ixing angles)isalm ost2 tim eslargerthan in standard m odeland can have an opposite sign,w hile the decay rate is alm ost the sam e. T he Lagrangian of interaction of quarks w ith scalar and SU (2) SU (2) U (1) gauge elds has the follow ing form : L = (A ik igR ~ R i + B ik L i ^a R iW R a R i + igL Li Ri+ c:c)+ ^a L iW L a (1) Li w here i,k= 1,2,3 and e = + o ! ~= o + o ! ! i;L ;R = U D i;L ;R T he sym m etry SU (2) SU (2) U (1) can be broken to SU (2)L U (1) by m eans of vacuum expectation values (vev) of doublet or triplet elds [9, 10, 11]. A s for SU (2) U (1) sym m etry breaking we assum e that it takes place w hen the scalar eld acquires the vev: ! k 0 ; (2) = 0 ei k0 T he interaction ofquark charged currentw ith W gauge boson and charged H iggs elds has the form : i + h 1 p (u;c;t) W^1 gL cos K L P gR sin ei K R P + + 2 1 gL M u K R P+ + tan 2 K L M d + ei + ’+ p cos2 2M W L 1 0 d 1 C B + tan 2 M u K L ei K RM d P @ sA cos2 b L ch = w here W 1 is the "light" (predom inantly left-handed) charge gauge boson and m ixing angle between left and right W -bosons, tan 2 = 2sin 2 gR M gL M 1 2 W L 2 W R tan = k0 k (3) is the K L and K R areK obayashi-M askawa m ixing m atricesforleftand rightcharged currents respectively,P = (1 5)=2, M u 1 0 1 0 md 0 0 B M d = @ 0 m s 0 CA 0 0 mb mu 0 0 B m c 0 CA ; = @ 0 0 0 mt T he m atrices K L and K R can be expressed in such a form w here K L has only one com plex phaseand K R has vecom plex phases[13].In (3)weom ittheterm ,connected w ith the interaction w ith heavy (predom inantly right)W -boson,w hich isnotrelevant for b! s decay. T he e ective lagrangian for b ! s decay has the follow ing form [9,10,11]: H b! s e 2G F m t W LR L p m b K tLs K tLbA Ws L O 7L + ei K tLs K tRb A O7 + 2 16 mb s 2 sin 2 m t ’ + L m s L L W L R A O + K K A O7 + ei K tLs K tRb 2 cos 2 m b s 7 m b ts tb s ! i R L m t W RL R i R L sin 2 m t ’ + R + e K ts K tb A O 7 + e K ts K tb 2 A O mb s cos 2 m b s 7 = (4) w here O 7L ;R = us (1 5)ubF ; O 8L ;R = us (1 2 8 232 23 A Ws L + A WsgL 1 A Ws L = 3 513 2 16 8 W W LR W 23 As = 23 A s L R + A sgL R 1 3 2 16 8 + + + 23 1 A ’s = 23 A ’s + A ’sg 3 16 23 W 5)ubG 19 23 W + 1 (5) + w here = ss(m(m Wb)) and the functionsA Ws L ,A s L ;R ,A s A WsgL ,A sgL ;R ,A sg waspresented in [9,10,11,14,15,16]: A Ws L = Q tF 1(x)+ G 1(x); A WsgL = F 1(x) A Ws L ;R = Q tF 2(x)+ G 2(x); A WsgL ;R = F 2(x) + A s = Q tF 3(y)+ G 3(y); (6) + A sg = F 3(y) and " F 1(x)= G 1(x)= F 2(x)= G 2(x)= # x4 3 3 3 2 x 3 2 x + x + + x log(x) x)4 4 2 4 2 2 " # 4 3 3 3 2 x 3 3 x 1 + x x + x log(x) x)4 2 4 2 4 2 " # x3 3 1 x + 2 + 3x log(x) x)3 2 2 " # 1 x3 15 2 2 + 6x x + 2 3x log(x) x)3 2 2 1 (1 (1 (1 (1 2 (7) " # y3 3 + 2y2 y ylog(y) 3 (1 y) 2 2 " # 1 y3 1 2 + y + y log(y) (1 y)3 2 2 1 F 3(y)= G 3(y)= w here Q t = 2=3 is the electric charge ofthe top quark,x = m 2t=m 2W ,y = m 2t=m 2’ + . T he direct C P- asym m etry for b ! s decay arises only w hen one take into account the nalstate interaction e ects,w hen the absorptive parts arise. A bsorptive parts of the decay am plitude arise from rescattering b ! suu ! s , b! scc ! s ,b! sg ! s : ( X e 2G F absorbt L L W L H b! = i 2 p m b K tLs K tLbA WsgL O 8L tsg! s + K qs K qb A sqq tsg! s + s 16 2 q= u;c sin 2 m t ’ + L m t W RL L A sg O 8 tsg! s + ei K tLs K tRb 2 A O tsg! s + (8) + ei K tLs K tRb mb cos 2 m b sg 8 ) i R L m t W RL R i R L sin 2 m t ’ + R + e K ts K tb A O 8 tsg! s + e K ts K tb 2 A O tsg! s m b sg cos 2 m b sg 8 w here + A ’sg = 14 23 + A ’sg ; A WsgL = 14 23 h i A WsgL 0:1687 ; A WsgL R = 14 23 A WsgL R (9) In the standard m odelonly for the rescattering b ! suu ! s and b ! scc ! s one obtains nonegligible contribution [14]. For the two H iggs doublet extension ofthe standard m odelorleft-right sym m etric m odelthe rescattering b! sg ! s also m ust be taken into consideration. Taking into account the standard m odelresult [14]we obtain the follow ing result for the absorptive part of the decay b ! s in left-right sym m etric m odel: KR 2 e 2G F s m bfO 7L ( (K tLs K tLbA WsgL + ei K tLs K tLb tLb A Rsg)+ i 2 p 16 9 K tb 2 R 1 L L K 2 L L + (K us (10) K ub + 0:12K cs K cb )c1)+ O 7R e i K tLs K tLb tLs A Rsgg 4 9 K ts absorbt H b! ’ s w here A Rsg m t W LR m t sin 2 ’ + A sg + A mb m b cos2 2 sg (11) W e note that our result is di erent from the one obtained in [15]: the contribution of the rescattering b ! sg ! s di ers from that in [15] by the factor 2/9. T he C P-asym m etry for the decay b! s and b! s is de ned as: (b! s ) (b! s ) (b! s )+ (b! s ) T he resulting C P-asym m etry is equalto: 2 s f(Im vt vu + 0:12Im vt vc) acp = L 2 (jC 7 j + jC 7R j2)vt vt c1 (R evt vu + 0:12R evt vc) (A Ws L + H cos A Rs ) 4 c1 2 A Rs H sin + H sin vtvt(A Ws L A Rsg A Rs A WsgL ) 4 9 acp = 3 (12) (13) w here m t sin 2 ’ + m t W LR K R tb As + ; A Rs A K L tb mb m b cos2 2 s vt K L tsK L tb; vc K L csK L cb; vu K L usK L ub ! R KR K C 7L = A Ws L + ei tLb A Rs ; C 7R = e i tLs A Rs K tb K ts H ei ei (14) In the num ericalresults we take s = 0:24,c1 ’ 1:1,m t = 175G eV ,m b = 4:5G eV , mb m b(m t) = 3G eV [10]. T he C P-asym m etry acp depends on the param eters of K obayashi-M askawa m ixing m atrix in W olfensteins param etrization: = 0.221, , [14,17,18,19],and also it depends on the param eters ofleft-right sym m etric m odel: ,tan 2 ,M W R ,M ’ + ,H .W eassum ethatjH j= jK tRb=K tLbj’ 1.Forthe xed m asseswe vary therem aining param etersand obtain theallowed region ofacp values.W etakeinto accountthatin the left-rightsym m etric m odelthe decay rate cannotdi ersu ciently from those obtained in the standard m odel. T he point is that the standard m odel predictions for decay rate are reasonable agreem ent w ith experim ent. W e present in Fig 1,2,3 the m inim aland m axim alvaluesofthe asym m etry forthe variousM W R ,M ’ + and 0 < tan 2 < 3:5 (the m axim aland m inim alvalues ofaC P are sym m etric under changing ofsign oftan 2 ). It is easy to see that the aC P can be about 2 tim es larger than the m axim alvalue ofasym m etry in the standard m odel. For the m asses ofright sector 5TeV the asym m etry is rather sensitive on changes ofthe H iggs boson m ass than therightW -boson m ass.In contrary to thestandard m odel,w heretheasym m etry have a negative sign,in our case the sign ofthe asym m etry can also be positive. T he results for aC P in Fig 1,2,3 are obtained under the assum ption that the decay rate in left-right sym m etric m odelcan di er from the standard m odelpredictions no m ore than = 10% .O urcalculationsshow thatthe resultsform axim aland m inim alvalues of aC P practically does not change w hen we vary from 10% to 50% . T his fact is illustrated in Fig 4,w here we com pare the results for = 10% and = 50% for m asses M W R = M ’ + = 10TeV . In table we present the aC P m inim aland m axim alvalues in left-right sym m etric m odelforsom e valuesofthe param etersM W R ,M ’ + ,tan 2 and for , "best t" [19]: ( ; )= ( 0:05;0:37). For = 0:37 the standard m odelprediction for aC P is -0.64% . Forthe sam e the value ofaC P in left-rightsym m etric m odelcan be alm ost2.5 tim es larger. In conclusion, we have calculated the C P asym m etry in the decay b ! s for the left-right sym m etric m odelSU (2) SU (2) U (1). W e have show n that the C Pasym m etry forthereasonablerangeofparam eterscan belargerthan in standard m odel and can have an opposite sign. T he research described in this publication was m ade possible in part by G rant N M V U 000 from theInternationalScience Foundation.A .I.hasbeen supported by Lady D avis Trustship. 4 TA BLE M W R = 1.5TeV ,M ’ + = 10TeV M W R = 10TeV ,M ’ + = 1.5TeV M W R = 10TeV ,M ’ + = 10TeV M W R = 20TeV ,M ’ + = 20TeV M W R = 50TeV ,M ’ + = 10TeV M W R = 10TeV ,M ’ + = 50TeV M W R = 50TeV ,M ’ + = 50TeV tan 2 = 1 ( 1:51 0:33)% ( 0:90 0:37)% ( 0:73 0:55)% ( 0:93 0:35)% ( 0:65 0:63)% ( 0:66 0:62)% tan 2 = 2 ( 0:76 0:16)% ( 1:27 0:25)% ( 0:93 0:35)% ( 1:31 0:28)% ( 0:67 0:61)% ( 0:70 0:58)% tan 2 = 3 ( 0:39 0:41)% ( 1:21 0:06)% ( 0:48 0:44)% ( 0:74 0:54)% ( 0:77 0:51)% T he m inim aland m axim alvalues ofaC P for = -0.05, = 0.37 and som e values of M W R ,M ’ + and tan 2 . 5 R eferences [1] J.H ewett,SLA C -PU B-6521,hep-ph/9406302. [2] R .A m m ar et al.,C LEO C ollaboration,Phys.R ev.Lett.71 (1993)674. [3] B.G rinstein and M .B.W ise,Phys.Lett.B201,(1988),274. [4] W .S.H ou,R .S.W illey,Phys.Lett.B202,(1988),591. [5] R .Barbieriand G .F.G uidice,Phys.Lett.B309,(1993),86. [6] S.Bertoliniet al.N ucl.Phys.B353,(1991),591. [7] L.R andaland R Sundrum ,M IT preprint M IT -C T P-2211 (1993). [8] D .C ocolicchio et al,Phys.R ev.D 40 (1989)1477. [9] H .M .A satryan and A .N .Ioannissyan,M od.Phys.Lett.A 5 (1990) 1089. [10] K .S.Babu,K .Fujikawa and A .Yam ada,Phys.Lett.B333 (1994)196. [11] P.C ho and M .M isiak,Phys.R ev.D 49 (1994)5894. [12] G .Ecker and W .G rim us,in: M oriond 86,v.1,p.201. [13] R .N .M ohapatra,in "C P V iolation" ed.by C .Jarslkog,W orld Scienti c,page 384. [14] J.Soares,N ucl.Phys.B 367 (1991) 575. [15] L.W olfenstein and Y .L.W u,Phys.R ev.Lett.73 (1994)2809. [16] B.G rinstein,R .Springer,M .B.W ise,N ucl.Phys.B339 (1990),269. [17] A .A li,D .London.Proceedingsofthe27 InternationalC onference on H igh Energy Physics.G lasgo,1994,page 1113. [18] P. D arriulat. Proceedings of the 27 International C onference on H igh Energy Physics.G lasgo,1994,page 367. [19] A .A li,D .London.Preprint D ESY 95-148. 6 Figure C aptions Fig1. T he m axim aland m inim alvalues ofaC P in % for M W R = 5TeV ,M ’ + = 5TeV (curves 1 and 2);for M W R = 10TeV ,M ’ + = 10TeV (curves 3 and 4);for M W R = 20TeV , M ’ + = 20TeV (curves 5 and 6);for M W R = 50TeV ,M ’ + = 50TeV (curves 7 and 8). Fig2.T hem axim aland m inim alvaluesofaC P in % forM W R = 1.5TeV and M ’ + = 10TeV (curves 1 and 2);M W R = 5TeV and M ’ + = 10TeV (curves 3 and 4);M W R = 10TeV and M ’ + = 10TeV (curves 5 and 6);M W R = 20TeV and M ’ + = 10TeV (curves 7 and 8). Fig3.T hem axim aland m inim alvaluesofaC P in % forM W R = 10TeV and M ’ + = 1.5TeV (curves 1 and 2);M W R = 10TeV and M ’ + = 5TeV (curves 3 and 4);M W R = 10TeV and M ’ + = 10TeV (curves 5 and 6);M W R = 10TeV and M ’ + = 20TeV (curves 7 and 8). Fig4.T he m axim aland m inim alvaluesofaC P in % forM W R = 10TeV ,M ’ + = 10TeV and allowed di erencefrom standard m odel10% (curves1 and 2);M W R = 10TeV ,M ’ + = 10TeV and allowed di erence from standard m odel50% (curves 3 and 4). 7 8 9 10
© Copyright 2026 Paperzz