Begin solution by finding lengths of equation b) vectors.

Given data:
m1 = 20 g
e1= 60 mm
φ1 = 70°
Example
(variant)
m = 40 g
2
e2= 80 mm
φ2 = 140°
Solve 2 equations:
a)
̅
̅
̅̅̅̅̅
̅̅̅̅̅
b)
Constants
m3 = 60 g
e3= 70 mm
φ3 = 220°
̅
̅̅̅̅
̅̅̅̅̅
̅̅̅̅̅
̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅
In short:
a) ⃗⃗⃗⃗
b) ⃗⃗⃗
⃗⃗⃗⃗⃗
⃗⃗⃗⃗⃗
⃗⃗⃗⃗
⃗⃗⃗⃗
⃗⃗⃗⃗⃗
⃗⃗⃗⃗⃗⃗⃗
⃗⃗⃗⃗⃗⃗⃗
Begin solution by finding lengths of equation b) vectors.
Graphical solution of equation b):
Length bkII and angle ϕkII are measured from drawing:
m?(g) e?(mm)
20
30
40
3x50 ?
2x60
70
Choose mkII = 50 g (for ex.)
Calculate ekII =
Graphical solution of equation b):
Length akI and angle ϕkI are measured from drawing:
m?(g) e?(mm)
20
30 ?
40
3x50
2x60
70
Choose mkI = 30 g (for ex.)
Calculate ekI =