Showing that two sides of a potential trigonometric identity are equal for a given value is not enough proof that it is true for all permissible values of the variable. Substitute for familiar trig relationships Express in terms of sine or cosine. If the expression contains squared terms or 1, -1, try using a Pythagorean Identity. Multiply, expand, factor, reduce or square. Common denominator to add or subtract. Multiply by the conjugate of a binomial. Math 30-1 1 Proving an Equation is an Identity 2 sin A 1 1 Consider the equation 1 . 2 sin A sinA sinA a) Use a graph to verify that the equation is an identity. b) Verify that this statement is true for x = 2.4 rad. c) Use an algebraic approach to prove that the identity is true in general. State any restrictions. a) sin2 A 1 y sin2 A sin A 1 y 1 sin A Math 30-1 2 Proving an Equation is an Identity [Cont’d] b) Verify that this statement is true for x = 2.4 rad. sin2 A 1 sin2 A sinA 1 1 sinA (sin 2.4)2 1 (sin 2.4)2 sin2.4 1 1 sin 2.4 = 2.480466 = 2.480466 L.S. = R.S. Therefore, the equation is true for x = 2.4 rad. Math 30-1 3 Proving an Equation is an Identity c) Use an algebraic approach to prove that the identity is true in general. State any restrictions. Note the left side of the sin2 A 1 sin2 A sinA 1 1 sinA (sinA 1)(sinA 1) sinA(sinA 1) 1 1 sin A (sin A 1) sin A sinA 1 sinA sin A 1 1 sin A L.S. = R.S. Math 30-1 equation has the restriction sin2A - sin A ≠ 0 sin A(sin A - 1) ≠ 0 sin A ≠ 0 or sin A ≠ 1 A 0, or A 2 Therefore,A 0 2 n or A + 2 n, or A 2 n, wheren is 2 any integer. The right side of the equation has the restriction sin A ≠ 0, or A ≠ 0. Therefore, A ≠ 0, + 2 n, 4 where n is any integer. Proving an Identity common denominator 1 1 2 csc 2 x 1 cos x 1 cos x (1 cos x) (1 cos x) 2 csc 2 x (1 cos x)(1 cos x) 2 (1 cos 2 x) 2 sin 2 x 2 csc 2 x L.S. = R.S. x n , n x 180 n, n Math 30-1 5 Proving an Identity factoring sin4x - cos4x = 1 - 2cos2 x = (sin2x - cos2x)(sin2x + cos2x) 1 - 2cos2x = (sin2x - cos2x)(1) = 1 - cos2x - cos2x = 1 - 2cos2x L.S. = R.S. Math 30-1 6 Proving an Equation is an Identity Substitution sin 2 cos 2 1 2sin cos cos 2 sin 2 1 tan sin cos 2sin cos cos 2 1 sin 2 2sin cos 2 cos 2 sin cos 30-1 L.S. =Math R.S. 7 Proving an Equation is an Identity Multiplying by Conjugates 1 cos sin sin 1 cos sin 1 cos 1 cos 1 cos sin 1 cos 1 cos 2 sin 1 cos sin 2 1 cos sin Math 30-1 8 Textbook p. 314 – 315 Low: (Basic Drill and Practice) 1 – 7, 8 Medium: (Problem Solving and Word Problems) 9, 19 High: (Extension and Higher Level) 10 – 18, C2, C3 Math 30-1 9
© Copyright 2026 Paperzz