a Ô 64 128 QAM 160 Gbit/s-600 km OTDM 160Gb/s 土田英実(産業

‫ޟ‬᭽ᑼ㧟‫ޠ‬
ណᛯ࿁ᢙ
㧞
⺖㗴⇟ภ 㧴㧝㧣㧛㧮㧝㧝
⿥㜞ㅦశࡄ࡞ࠬ೙ᓮᛛⴚߦ㑐ߔࠆ⎇ⓥ
㨇㧝㨉⚵❱
ઍ⴫⠪㧦࿯↰ ⧷ታ
㧔↥ᬺᛛⴚ✚ว⎇ⓥᚲశᛛⴚ⎇ⓥㇱ㐷㧕
ኻᔕ⠪㧦ਛᴛ ᱜ㓉
㧔᧲ർᄢቇ㔚᳇ㅢା⎇ⓥᚲ㧕
ಽᜂ⠪㧦
ᑝጟ ବᒾ㧔᧲ർᄢቇ㔚᳇ㅢା⎇ⓥᚲ㧕
ศ↰ ⌀ੱ㧔᧲ർᄢቇ㔚᳇ㅢା⎇ⓥᚲ㧕
ᝋ㑆 ኼᢥ㧔↥ᬺᛛⴚ✚ว⎇ⓥᚲ㧕
⍹Ꮉ ᶈ㧔↥ᬺᛛⴚ✚ว⎇ⓥᚲ㧕
㠽Ⴆ ஜੑ㧔↥ᬺᛛⴚ✚ว⎇ⓥᚲ㧕
ᄢ⧣ ᢕ㧔↥ᬺᛛⴚ✚ว⎇ⓥᚲ㧕
⟤Ớፉ ⮍㧔↥ᬺᛛⴚ✚ว⎇ⓥᚲ㧕
ᵩ ㌵㔗㧔↥ᬺᛛⴚ✚ว⎇ⓥᚲ㧕
Ⓑ႐ ⡸㧔↥ᬺᛛⴚ✚ว⎇ⓥᚲ㧕
Ꮉ⷏ ື਽㧔ᖱႎㅢା⎇ⓥᯏ᭴㧕
⩵ᳰ ๺ᦶ㧔᧲੩ᄢቇ㧕
⚊ን 㓷਽㧔㧺㨀㨀㧕㩷
ዊᨋ ഞ㇢㧔᧲੩Ꮏᬺᄢቇ㧕
⎇ⓥ⾌㧦ᶖ⠻ຠ⾌㧟ਁ㧣ජ౞㧘ᣏ⾌㧞㧢ਁ㧤ජ౞
㨇㧞㨉⎇ⓥ⚻ㆊ
ᜬ⛯ᤨ㑆߇ࡇࠦ㨪ࡈࠚࡓ࠻⑽㗔ၞߩ⿥㜞ㅦశࡄ࡞
ࠬࠍ㜞ᐲߦ೙ᓮߔࠆᛛⴚߩ㐿⊒ߪ‫ᤨޔ‬ಽഀᄙ㊀ᣇᑼ
ߩశㅢାࠪࠬ࠹ࡓ‫ޔ‬ᭂ㒢ᤨ㑆ၞߩశ⸘᷹‫ޔ‬శ๟ᵄᢙ
ᮡḰ࡮⸘᷹╬ߩᔕ↪ߦ߅޿ߡᭂ߼ߡ㊀ⷐߥ⺖㗴ߢ޽
ࠆ‫⿥ޕ‬㜞ㅦశࡄ࡞ࠬ೙ᓮᛛⴚߦ㑐ߔࠆ⎇ⓥߢߪ‫ޔ‬ᰴ
਎ઍߩ⿥㜞ㅦశ೙ᓮᛛⴚߩ⏕┙ࠍ⋡ᜰߔߎߣࠍ⋡⊛
ߣߒߡ‫᧲ޔ‬ർᄢቇ࡮㔚᳇ㅢା⎇ⓥᚲ‫↥ޔ‬ᬺᛛⴚ✚ว
⎇ⓥᚲ╬ߩ⎇ⓥ⠪ߩ㑆ߢ‫⿥ޔ‬㜞ㅦశࡄ࡞ࠬ೙ᓮᛛⴚ
ߦ㑐ߔࠆ⎇ⓥ⸛⺰ࠍⴕ޿‫⎇ޔ‬ⓥᵴേߩ⚫੺ߣ዁᧪ߩ
ᣇะᕈߦ㑐ߔࠆ⼏⺰ࠍⴕߞߚ‫ޕ‬
ᧄࡊࡠࠫࠚࠢ࠻ߪ㧘ᧄᐕᐲ߇㧞ᐕ⋡ߦᒰߚࠅ‫ޔ‬ᐔ
ᚑ㧝㧤ᐕ㧝㧝᦬㧝㧟ޯ㧝㧠ᣣߦ㔚᳇ㅢା⎇ⓥᚲߦ߅
޿ߡ‫᧲ޔ‬ർᄢቇ‫↥ޔ‬ᬺᛛⴚ✚ว⎇ⓥᚲ‫ޔ‬ᖱႎㅢା⎇
ⓥᯏ᭴‫᧲ޔ‬੩ᄢቇ‫ޔ‬㧺㨀㨀‫᧲ޔ‬੩Ꮏᬺᄢቇߩ⎇ⓥ⠪
߇ෳടߒߡ⎇ⓥળࠍ㐿௅ߒ‫ޔ‬
㧝㧠ઙߩ⊒⴫ࠍⴕߞߚ‫ޕ‬
⿥㜞ㅦశࡄ࡞ࠬવㅍ‫ޔ‬
ㆡᔕಽᢔ╬ൻ‫ޔ‬
శ૏⋧ᄌᓳ⺞‫ޔ‬
శࠢࡠ࠶ࠢ᛽಴‫ޔ‬
⿥㜞ㅦశ࠺ࡃࠗࠬ‫ޔ‬
శ๟ᵄᢙ⸘᷹‫ޔ‬
శ๟ᵄᢙࠪࡦ࠮ࠨࠗࠩ‫ޔ‬శಽ๟‫ޔ‬శࡈࠔࠗࡃ࡟࡯ࠩ
╬ߩ⊒⴫ߦኻߒߡ‫ޔ‬ᵴ⊒ߥ⸛⺰ࠍⴕߞߚ‫⎇ޕ‬ⓥળߩ
ࡊࡠࠣ࡜ࡓࠍએਅߦ␜ߔ㧔٤ߪ⊒⴫⠪ࠍ␜ߔ㧕
‫ޕ‬
㧝㧝᦬㧝㧟ᣣ㧔᦬㧕
㧝㧚㐿ળ᜿ᜦ ਛᴛᱜ㓉㧔᧲ർᄢቇ㧕
㧞㧚๟ᵄᢙ቟ቯൻ࡟࡯ࠩߣዪ⊒࡟࡯ࠩࠍ↪޿ߚ 64‫ޔ‬
128 ࠦࡅ࡯࡟ࡦ࠻ QAM વㅍߩၮ␆ታ㛎㧦٤ᧄ
ㇹᷕᐔ‫⷏⪾ޔ‬ᕺ੺‫ޔ‬ศ↰⌀ੱ‫ޔ‬ਛᴛᱜ㓉㧔᧲ർ
ᄢቇ㧕
㧟㧚㔚᳇శቇᄌ⺞ེߦࠃࠆ⿥㜞ㅦశᝄ᏷࡮૏⋧࡮๟
ᵄᢙ೙ᓮ㧦Ꮉ⷏ື਽㧔ᖱႎㅢା⎇ⓥᯏ᭴㧕
㧠㧚࠺ࠫ࠲࡞ࠦࡅ࡯࡟ࡦ࠻శฃାེ㧦٤⩵ᳰ๺ᦶ㧔᧲
੩ᄢቇ㧕
㧡㧚ᤨ 㑆 㗔 ၞ శ ࡈ ࡯ ࡝ ࠛ ᄌ ឵ ࠍ ↪ ޿ ߚ 160
Gbit/s-600 km OTDM વㅍ㧦٤ᑝጟବᒾ‫↢⪤ޔ‬
↰⎇৻‫ޔ‬ᾢୖፏ‫ޔ‬ᄢỈ⠹‫ޔ‬ਛᴛᱜ㓉㧔᧲ർᄢቇ㧕
㧢㧚ౣ↢ࡕ࡯࠼หᦼඨዉ૕࡟࡯ࠩࠍ↪޿ߚ 160Gb/s
శࠢࡠ࠶ࠢ᛽಴㧦٤࿯↰⧷ታ䋨↥ᬺᛛⴚ✚ว⎇ⓥ
ᚲ䋩
㧣㧚శࠦࡓࠍ↪޿ߚ㜞♖ᐲ〒㔌ᮡḰߩ㐿⊒㧦٤⟤Ớ
ፉ⮍‫ޔ‬
Ⓑ႐⡸‫ޔ‬
᧻ᧄᒄ৻
㧔↥ᬺᛛⴚ✚ว⎇ⓥᚲ㧕
‫ޔ‬
㘵㊁⟵ⴕ‫ޔ‬ᾢ⼱⮍㧔࠻ࡊࠦࡦ㧕
㧤㧚Cs ੑ㊀౒㡆శ࠮࡞ࠍ↪޿ߚࡕ࡯࠼หᦼ࡟࡯ࠩ
ဳశේሶᤨ⸘ߩឭ᩺ߣߘߩേ૞㧦٤ᐔጊᔀ‫ޔ‬ศ
↰⌀ੱ‫ޔ‬ਛᴛᱜ㓉㧔᧲ർᄢቇ㧕
㧥㧚శ๟ᵄᢙ᝹ᒁ߇น⢻ߥ 40 GHz ࡇࠦ⑽ࡕ࡯࠼ห
ᦼࡈࠔࠗࡃ࡟࡯ࠩ㧦٤ศ↰⌀ੱ‫⷏⪾ޔ‬ᕺ੺‫ޔ‬ਛ
ᴛᱜ㓉㧔᧲ർᄢቇ㧕
㧝㧝᦬㧝㧠ᣣ㧔Ἣ㧕
㧝㧚ࡢࠗ࠼ࠡࡖ࠶ࡊ ++8+ ᣖඨዉ૕㊂ሶ੗ᚭࠨࡉࡃ
ࡦ࠼㑆ㆫ⒖ࠍ೑↪ߒߚ⿥㜞ㅦࠬࠗ࠶࠴ߩૐࠛࡀ
࡞ࠡ࡯േ૞ൻ㧦٤⑺ᧄ⦟৻‫)ޔ〝৻↰⑺ޔ‬WCPIYGK
%QPI‫ޔ‬ᝋ㑆ኼᢥ‫ޔ‬⍹Ꮉᶈ㧔↥ᬺᛛⴚ✚ว⎇ⓥᚲ㧕
㧞㧚+P)C#U#N#U#N#U5D ඨዉ૕㊂ሶ੗ᚭࠨࡉࡃࡦ࠼
㑆ㆫ⒖ߩ⋧੕૏⋧ᄌ⺞ࠍ↪޿ߚ )DU ᵄ㐳ᄌ
឵㧦٤࿯↰⧷ታ‫ޔ‬ਅጊፄผ‫ޔ‬⍹Ꮉᶈ‫‛ޔ‬㓸ᾖᄦ‫ޔ‬
᳗ἑᚑ▸㧔↥ᬺᛛⴚ✚ว⎇ⓥᚲ㧕
‫⷏⪾ޔ‬ᷕ৻㧔ᣣ
┙⵾૞ᚲ㧕
㧟㧚+P)C#U#N#U#N#U5D ࠨࡉࡃࡦ࠼㑆ㆫ⒖ࠬࠗ࠶࠴
ߦ߅ߌࠆ 6/ శߦࠃࠆ 6' శ૏⋧ᄌ⺞ߩࡔࠞ࠾࠭
ࡓ㧦٤⍹Ꮉᶈ‫ޔ‬࿯↰⧷ታ‫ޔ‬ਅጊፄผ‫‛ޔ‬㓸ᾖᄦ‫ޔ‬
᳗ἑᚑ▸‫ޔ‬ᝋ㑆ᄈᢥ㧔↥ᬺᛛⴚ✚ว⎇ⓥᚲ㧕
㧠㧚dz/4 ࠪࡈ࠻஍ᵄ଻ᜬ &($ ࡈࠔࠗࡃ࡟࡯ࠩߩ࡝ࡦ
ࠣ౒ᝄེൻߣ⊒ᝄ․ᕈߩะ਄㧦٤㋈ᧁ⡡ੱ‫ޔ‬㜞
ᯅ㓁ᐔ‫ޔ‬ਛᴛᱜ㓉㧔᧲ർᄢቇ㧕
㧡㧚ࡈࠜ࠻࠾࠶ࠢ⚿᥏࠽ࡁ౒ᝄེࠍ↪޿ߚశ೙ᓮߩ
ዷ㐿㧦٤⚊ን㓷਽䋨䌎䌔䌔䋩
㧢㧚․ቯ㗔ၞ⎇ⓥ"ᣂ਎ઍశㅢା̍ߩ⎇ⓥᵴേ⚫੺㧦
٤ዊᨋഞ㇢㧔᧲੩Ꮏᬺᄢቇ㧕
㧣㧚㐽ળ᜿ᜦ ࿯↰⧷ታ㧔↥ᬺᛛⴚ✚ว⎇ⓥᚲ㧕
㨇㧟㨉ᚑᨐ
㧔㧟㧙㧝㧕⎇ⓥᚑᨐ
ᧄᐕᐲߪ㧘એਅߦ␜ߔ⎇ⓥᚑᨐࠍᓧߚ‫ޕ‬
Ԙ๟ᵄᢙ቟ቯൻߒߚశࡈࠔࠗࡃ࡟࡯ࠩࠍㅍାེ‫ޔ‬
߅
ࠃ߮ዪㇱ⊒ᝄེߣߒߡ↪޿ߚ⋥੤ᝄ᏷ᄌ⺞
㧔3#0㧕
વㅍታ㛎ࠍⴕ޿‫ޔޔ‬3#/ ାภߦኻߒߡ‫ߘޔ‬
ࠇߙࠇ MO ߩવㅍࠍታ⃻ߒߚ‫ޕ‬
ԙ⿥㜞ㅦశᝄ᏷࡮૏⋧࡮๟ᵄᢙߩ೙ᓮࠍน⢻ߦߔࠆ
ᄙᯏ⢻శᄌ⺞ེࠍ㐿⊒ߒ‫(ޔ‬5-‫&ޔ‬325- ߥߤ⒳‫ޘ‬
ߩᄌ⺞ାภߩ⊒↢‫ޔ‬
ࠕࡦࡃ࡜ࡦࠬ⵬ᱜߦࠃࠆᶖశ
Ყߩะ਄‫⥄ࠬࠕࠗࡃޔ‬േ೙ᓮࠍታ⃻ߒߚ‫ޕ‬
Ԛ࠺ࠫ࠲࡞ାภಣℂ㧔&52㧕࿁〝ࠍ↪޿ߚ࠺ࠫ࠲࡞
ࠦࡅ࡯࡟ࡦ࠻శฃାེࠍ㐿⊒ߒ‫)ޔ‬U[ODQNU ߩ
/CT[25- ାภߩᓳ⺞ࠍⴕ޿‫&ޔ‬52 ߦࠃࠆ⟲ㅦᐲ
ಽᢔߣ㕖✢ᒻ૏⋧㔀㖸⵬ఘࠍታ⃻ߒߚ‫ޕ‬
ԛᤨ㑆㗔ၞࡈ࡯࡝ࠛᄌ឵ࠍ↪޿ߚ )DU વㅍࠪ
ࠬ࠹ࡓታ㛎ࠍⴕ޿‫ޔ‬
ಽᢔߣಽᢔࠬࡠ࡯ࡊߦࠃࠆᵄ
ᒻᱡߺ㒰෰ߔࠆߎߣߦࠃࠅ‫ޔ‬MO વㅍࠍታ⃻ߒ
ߚ‫ޕ‬
Ԝౣ↢ࡕ࡯࠼หᦼඨዉ૕࡟࡯ࠩࠍ↪޿ߚ )DU
శࠢࡠ࠶ࠢ᛽಴ᛛⴚࠍ㐿⊒ߒ‫ࠬ࡞ࡄޔ‬᏷ RU‫ޔ‬
࠲ࠗࡒࡦࠣࠫ࠶࠲࡯HU ࠍᓧߚ‫ޔߚ߹ޕ‬ඨዉ૕
శჇ᏷ེࠍశࠥ࡯࠻ࠬࠗ࠶࠴ߣߒߡ↪޿ߚ
)DU శ㧟㧾ౣ↢ߩၮᧄേ૞ࠍ⏕⹺ߒߚ‫ޕ‬
ԝశ๟ᵄᢙࠦࡓࠍ೑↪ߒߚ㜞♖ᐲ〒㔌⸘ࠍ㐿⊒ߒ‫ޔ‬
O ߩ〒㔌ߦ߅޿ߡ๟ᦼ⺋Ꮕ ǴO‫ޔ‬O ߩ〒㔌
ߦ߅޿ߡಽ⸃⢻ PO ࠍᓧߚ‫ޔߚ߹ޕ‬น៝ဳߩࡊ
ࡠ࠻࠲ࠗࡊᯏࠍ㐿⊒ߒ‫ޔ‬࿖㓙Ყセߦෳടߒߚ‫ޕ‬
Ԟ%U ੑ㊀౒㡆࠮࡞ࠍ↪޿ߚࡕ࡯࠼หᦼ࡟࡯ࠩဳේ
ሶᤨ⸘ࠍឭ᩺‫ޔ‬㐿⊒ߒ‫ޔ‬๟ᵄᢙ቟ቯᐲ Z
㧔ǼU㧕
‫ޔ‬Z㧔ǼU㧕ࠍታ⃻ߒ‫৻ޔ‬ᰴ
ᮡḰེߣห╬ߩ቟ቯᐲࠍᓧߚ‫ޕ‬
ԟ⍴౒ᝄེൻߣ౒ᝄེౝࠛ࠲ࡠࡦߩ೑↪ߦࠃࠅ‫ޔ‬
๟
ᵄᢙ᝹ᒁน⢻ߥ )*\ ࡕ࡯࠼หᦼశࡈࠔࠗࡃ࡟
࡯ࠩࠍታ⃻ߒߚ‫ޕ‬PO ߩᵄ㐳นᄌ▸࿐ౝ
ߢ RU ߩ⍴ࡄ࡞ࠬ಴ജࠍᓧߚ‫ޕ‬
Ԡ%F5<P5G$G6G ㊂ሶ੗ᚭߩࠨࡉࡃࡦ࠼㑆ㆫ⒖ࠍ
೑↪ߒߚ⿥㜞ㅦశࠬࠗ࠶࠴ࠍ㐿⊒ߒ‫ޔ‬
ዉᵄ〝ဳ⚛
ሶߦ߅޿ߡ‫✭ޔ‬๺ᤨ㑆 HU‫࡞ࡀࠛࡊࡦࡐޔ‬
ࠡ࡯R, ߦ߅޿ߡᶖశᲧ F$ ࠍታ⃻ߒߚ‫ޕ‬
ԡ+P)C#U#N#U#N#U5D ㊂ሶ੗ᚭߩࠨࡉࡃࡦ࠼㑆ㆫ
⒖ߦ߅ߌࠆ⋧੕૏⋧ᄌ⺞ലᨐ
㧔:2/㧕
ࠍ೑↪ߒߡ‫ޔ‬
)DU ᵄ㐳ᄌ឵ࠍታ⃻ߒ‫ࠖ࠹࡞࠽ࡍ࡯ࡢࡄޔ‬
F$ ࠍᓧߚ‫ޔߚ߹ޕ‬:2/ ࠍ೑↪ߒߚ⒳‫ߩޘ‬శା
ภಣℂ࿁〝ࠍឭ᩺ߒߚ‫ޕ‬
Ԣ+P)C#U#N#U#N#U5D ㊂ሶ੗ᚭߩࠨࡉࡃࡦ࠼㑆ㆫ
⒖ߦ߅ߌࠆ⋧੕૏⋧ᄌ⺞ലᨐ߇‫ޔ‬
ࡃࡦ࠼㕖᡼‛ᕈ
ߦ㑐ㅪߒߚࡊ࡜࠭ࡑലᨐߦࠃࠅ⺑᣿ߢ߈ࠆߎߣ
ࠍℂ⺰⸃ᨆߦࠃࠅ␜ߒߚ‫ޕ‬
ԣ࡝ࡦࠣ౒ᝄེဳdz ࠪࡈ࠻ &($ శࡈࠔࠗࡃ࡟࡯
ࠩࠍ⹜૞ߒ‫ޔ‬
శ಴ജ O9‫ޔ‬
ࠬࡍࠢ࠻࡞✢᏷ M*\‫ޔ‬
⋧ኻᒝᐲ㔀㖸F$*\ ࠍᓧߚ‫ޕ‬
Ԥࡈࠜ࠻࠾࠶ࠢ⚿᥏ߦࠃࠅ࠽ࡁ౒ᝄེࠍ⹜૞ߒ‫ޔ‬
㧽
୯ Z ‫ޔ‬ૐࠛࡀ࡞ࠡ࡯ߩశࠬࠗ࠶࠴ࡦࠣߣ෺቟
ቯࡔࡕ࡝േ૞ࠍታ⃻ߒߚ‫ޕ‬
ԥᢥㇱ⑼ቇ⋭․ቯ㗔ၞ⎇ⓥ
‫ޟ‬ᣂ਎ઍశㅢାߩࠗࡁࡌ
࡯࡚ࠪࡦ‫ߩޠ‬ၮᧄ᭴ᗐ‫ޔ‬ฦࠗࡁࡌ࡯࡚ࠪࡦߩ᭎ⷐ
ߣㅴ᝞⁁ᴫࠍ⚫੺ߒߚ‫ޕ‬
㧔㧟㧙㧞㧕ᵄ෸ലᨐߣ⊒ዷᕈߥߤ
⿥㜞ㅦశㅢାᛛⴚߦ㑐ߒߡᦨవ┵ߩࡐ࠹ࡦࠪࡖ࡞
ࠍ᦭ߔࠆ᧲ർᄢቇ࡮㔚᳇ㅢା⎇ⓥᚲߣ‫⿥ޔ‬㜞ㅦశ࠺
ࡃࠗࠬᛛⴚ‫⿥ޔ‬⍴ࡄ࡞ࠬ࡟࡯ࠩᛛⴚ‫ޔ‬ᮡḰ࡮⸘᷹ᛛ
ⴚߦታ❣ࠍ᦭ߔࠆ↥ᬺᛛⴚ✚ว⎇ⓥᚲߩ⎇ⓥ⠪‫߅ޔ‬
ࠃ߮࿖ౝߩ㑐ㅪߔࠆ⎇ⓥ⠪߇⎇ⓥ⊒⴫‫߁ⴕࠍ⺰⸛ޔ‬
ߎߣߦࠃࠅ‫ޔ‬ᒰ⹥ಽ㊁ߩ⎇ⓥ㐿⊒߇ടㅦߐࠇࠆߣߣ
߽ߦ‫ޔ‬ᒰ⹥ಽ㊁ߦ߅ߌࠆᚒ߇࿖ߩᛛⴚ⊛ఝ૏ᕈߩ⏕
┙ߦ⽸₂ߔࠆ‫ߥ߁ࠃߩߎޔߦࠄߐޕ‬੤ᵹࠍቇቭߛߌ
ߢߥߊ‫↥ޔ‬ᬺ⇇߿ᶏᄖߦ߹ߢᐢߍࠆߎߣߦࠃࠅ‫ޔ‬㔚
᳇ㅢା⎇ⓥᚲ߇ᒰ⹥ಽ㊁ߩ਎⇇⊛ߥ⎇ⓥ᜚ὐߣߥࠆ
ߎߣ߇ᦼᓙߢ߈ࠆ‫ޕ‬
㨇㧠㨉ᚑᨐ⾗ᢱ
(1) M. Nakazawa, M. Yoshida, K. Kasai, and J. Hongou,
“20 Msymbol/s, 64 and 128 QAM coherent optical
transmission over 525 km using heterodyne
detection with frequency-stabilised laser”, Electron.
Lett., vol. 42, no. 12, pp. 710-712, (2006).
(2) K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa,
“Performance improvement of an acetylene (C2H2)
frequency-stabilized fiber laser,” IEICE Electron.
Express, vol.3, no. 22, pp. 487-492, (2006).
(3) K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa,
“Optical phase-locked loop for coherent
transmission over 500km using heterodyne detection
with fiber lasers,” IEICE Electron. Express, vol. 4,
no. 3, pp. 77-81 (2007).
(4) T. Sakamoto, T. Kawanishi, and Masayuki Izutsu,
“Continuous-phase frequency-shift keying with
external modulation”, IEEE J. Sel. Top. Quantum
Electron, vol. 12, no. 4, pp. 589 – 595 (2006).
(5) T. Kawanishi, T. Sakamoto, and M. Izutsu,
“High-speed control of lightwave amplitude, phase,
and frequency by use of electrooptic effect”, IEEE J.
Sel. Top. Quantum Electron, vol. 13, no. 1, pp. 79-91
(2006).
(6) S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent
demodulation
of
optical
multilevel
phase-shift-keying signals using homodyne
detection and digital signal processing”, IEEE
Photon. Technol. Lett., vol.18, no.10, pp. 1131-1133
(2006).
(7) T. Hirooka and M. Nakazawa, “Optical adaptive
equalization of high-speed signals using
time-domain optical Fourier transformation (Invited
paper)”, J. Lightwave Technol., vol. 24, no. 7, pp.
2530-2540, July (2006).
(8) T. Hirooka, T. Kumakura, K. Osawa, and M.
Nakazawa, “Comparison of 40 GHz optical
demultiplexers using SMZ switch and EA modulator
in 160 Gbit/s-500 km OTDM transmission”, IEICE
Electron. Express, vol. 3, no. 17, pp. 397-403,
(2006).
(9) ਛᴛᱜ㓉, ᑝጟବᒾ, “⿥⍴శࡄ࡞ࠬࠍ↪޿ߚ㜞
ㅦశવㅍᛛⴚߩ⃻⁁ߣ዁᧪ዷᦸ,” 㔚ሶᖱႎㅢ
ାቇળ⺰ᢥ⹹㧔᜗ᓙ⺰ᢥ㧕, vol. J89-B, no. 11, pp.
2067-2081, (2006).
(10) T. Hirooka, K. Hagiuda, T. Kumakura, K. Osawa,
and M. Nakazawa, “160 Gb/s-600 km OTDM
transmission using time-domain optical Fourier
transformation,” IEEE Photon. Technol. Lett., vol.
18, no. 24, pp. 2647-2649, (2006).
(10) H. Tsuchida, “160-Gb/s optical clock recovery using
a regeneratively mode-locked laser diode”, IEEE
Photon. Technol. Lett., vol.18, no.16, pp. 1687-1689
(2006).
(11) H. Tsuchida, “40-GHz subharmonic optical clock
recovery using an injection-locked optoelectronic
oscillator”, IEICE Electron. Express, vol.3, no.15, pp.
373-378 (2006).
(12) H. Inaba, Y. Daimon, F. -L. Hong, A. Onae, K.
Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano,
T. Okuno, M. Onishi, and M. Nakazawa,
“Long-term measurement of optical frequencies
using a simple, robust and low-noise fiber based
frequency comb,” Opt. Express, vol. 14, no. 12, pp.
5223-5231 (2006).
(13) M. Nakazawa, M. Yoshida, and T. Hirooka,
“Ultra-stable regeneratively mode-locked laser as an
opto-electronic microwave oscillator and its
application to optical metrology,” IEICE Trans.
Electron., Invited paper, vol. E90-C, no. 2, pp.
443-449 (2007).
(14) K. Akita, R. Akimoto, T. Hasama, H. Ishikawa, and
Y. Takanashi, “Intersubband all-optical switching in
submicron high-mesa SCH waveguide structure
with wide-gap II-VI-based quantum wells”, Electron.
Lett., vol. 42, no. 23, pp.1352-1353 (2006).
(15) H. Ishikawa, H. Tsuchida, K. S. Abedin, T.
Simoyama, T. Mozume, M. Nagase, R. Akimoto, T.
Miyazaki, and T. Hasama, “Ultrafast all-optical
refractive index modulation in intersubband
transition switch using InGaAs/AlAs/AlAsSb
quantum well”, Jpn. J. Appl. Phys., vol. 46, no. 8, pp.
L157-L160 (2007).
(16) A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I.
Yokohama, H. Takara, and S. Kawanishi,
“All-optical flip-flop circuit composed of coupled
two-port resonant tunneling filter in two-dimensional
photonic crystal slab”, Opt. Express, vol. 14, no. 3,
pp. 1230-1235 (2006).
(17) M. Notomi, H. Taniyama, S. Mitsugi, and E.
Kuramochi, "Optomechanical wavelength and
energy conversion in high-Q double-layer cavities of
photonic crystal slabs", Phys. Rev. Lett., vol. 97,
023903 (2006).