Application of Light Scattering for Analysis of Protein-Protein Interaction and Aggregation Ewa Folta-Stogniew Yale University • • • Light Scattering Technologies – Static and dynamic light scattering – Parameters derived from SLS and DLS measurements Flow Mode Light Scattering Applications – Molar mass distributions and differences in populations – Determination of an oligomeric state of modified proteins from SEC-LS/UV/RI measurement – Determination of dimerization constant from SEC-LS measurements Capabilities and limitation of LS measurements Light Scattering Experiments Monochromatic Laser Light Io sample cell I Θ1 Θ2 IΘ1 Computer IΘ2 detector at angle Θ2 Light Scattering Experiments • Static (classical) • Dynamic (quasielastic) fluctuation of intensity of scattered light with time time-averaged intensity of scattered light Measurements: • batch mode derived: Parameters • • “in-line” mode(weight-average) combined with a accuracy fractionation step, Molar Mass ~5% Parameters derived: • DT translation diffusion coefficient mainly Size Exclusion Chromatography, Field Fractionation 2 chromatography, 1/2 hydrodynamic radius (Stokes radius) • (<ri.e. • RFlow g > ) root mean square radii h for (<rg2>1/2)> (λ/ 20) ~ 15 nm Uncertainty of ~10% for monodisperse sample • A2 second virial coefficient Rayleigh-Debye-Zimm formalism Stokes-Einstein K *c 1 = + 2A2c R(θ ) MwP(θ ) R(Θ) c Mw A2 P(Θ) K Rayleigh ratio (excess scattered light) sample concentration (g/ml) weight-average molecular weight (molar mass) second virial coefficient (ml-mol/g2) form factor (angular dependence) optical constant [4π2n2 (dn/dc)2 /(λo4NA)] DT = DT k T Rh η kT 6πηRh translational diffusion coefficient Boltzmann constant temperature radius solvent viscosity Typical SEC-MALLS system SEC sa m p le w aste o r colum n collec tio n H P LC UV LS RI syste m d e te cto r d e te cto r d e te cto r D L S + S LS 0.1 μ m p re-filte re d bu ffe r 0.1 μ m “in -lin e ” filte r C o m p u te r Three Detector monitoring 2.0 Peak ID - Ova_071305a_01_P_N LS #11 AUX1 AUX2 LS #11, AUX1, AUX2 1.5 1.0 0.5 0.0 -0.5 4.0 8.0 12.0 16.0 20.0 Volume (mL) UV at 280 nm RI LS at 90° Molar mass distribution for multiple analyses Ovalbumin 43 kDa automated template processing of five data sets Molar Mass vs. Volume 1.0x109 OVA_e_UV OVA_200_a_P_N_UV_templat... OVA_b_UV OVA_c_UV OVA_d_UV Molar Mass (g/mol) 1.0x108 1.0x107 1.0x106 1.0x105 1.0x104 6.0 8.0 10.0 12.0 Volume (mL) 14.0 16.0 Determination of Weight Fractions Cumulative Molar Mass Cumulative Weight Fraction W 1.0 0.8 Oligomeric state Average Mw ± SD [kDa] OVA_e_UV (3 analyses) Fraction of Mass [% of total] (3 analyses) OVA_200_a_P_N_UV_templat... 85.23 ± 0.06 42.80 ± 0.02 OVA_b_UV 9.4 ± 0.0 (50-96 kDa) 84.1± 0.2 OVA_c_UV 1.9 ± 0.0 (96-130 kDa) OVA_d_UV 121.8 ± 0.7 Mono (20-50 kDa) 0.6 Di Tri 0.4 Agg. (0.13 –1 MDa) 284 ± 2 2.87± 0.06 Agg. (1 –100 MDa) 10.9±0.4 x103 0.6 ± 0.0 0.2 0.0 1.0x104 1.0x105 1.0x106 1.0x107 Molar Mass (g/mol) 1.0x108 1.0x109 Differences in population based on molar mass distribution Molar Mass vs. Volume 1.0x10 9 Ovalbumin (5 runs) OVA_e_UV OVA_a_UV OVA_b_UV OVA_c_UV OVA_d_UV Ova_071305c Ova_071305a Ova_071305b Molar Mass (g/mol) 1.0x10 8 1.0x10 7 Mw = 108 ± 17 kDa Polydispersity Mw/Mn 2.3 ± 0.4 1.0x10 6 Ovalbumin 1.0x10 5 1.0x10 4 6.0 (3 runs) Mw = 141 ± 3 kDa Polydispersity Mw/Mn 8.0 10.0 12.0 Volume (mL) 14.0 16.0 2.92 ± 0.06 Differences in population based on molar mass distribution Ovalbumin 43 kDa Cumulative Molar Mass OVA_e_UV OVA_a_UV OVA_b_UV OVA_c_UV OVA_d_UV Ova_071305c Ova_071305a Ova_071305b Cumulative Weight Fraction W 1.00 0.95 Average Mw ± SD [kDa] (5 analyses) Oligomeric state Average Mw ± SD [kDa] (3 analyses) Fraction of Mass [% of total] (5 analyses) Fraction of Mass [% of total] (3 analyses) Mw = 141 ± 3 Mw = 108 ± 17 Mw = 141 ± 3 0.90 Mw = 108 ± 17 Ovalbumin (5 runs) 43.0 ± 0.1 Mono (20-50 kDa) 0.85 4 1.0x10 (3 runs) 88.1 ± 0.1 85.23 ± 0.06 MMw = 108 Di (50-96 kDa) ± 17 kDa82.7 ± 0.4 MMw ± 3±kDa 84.1± 0.2= 141 7.68 0.04 9.4 ± 0.0 Tri (96-130 kDa) Polydispersity Mw/Mn114 ± 4 121.8 ± 0.7 1.54 Mw/Mn ± 0.05 Polydispersity 1.9 ± 0.0 Agg. (0.13 –1 MDa) 270 ±10 284 ± 2 Agg. (1 –100 MDa) 10±1 x103 10.9±0.4 x103 2.3 ± 0.4 0.80 1.0x10 Ovalbumin 42.80 ± 0.02 5 1.0x10 6 1.0x10 Molar Mass (g/mol) 7 2.18 ± 0.08 2.87± 0.06 0.4 ± 0.0 0.6 ± 0.0 2.92 ± 0.06 1.0x10 8 1.0x10 9 Determination of the oligomeric state of modified proteins from SEC-LS/UV/RI analysis 1. Glycosylated proteins 2. Proteins conjugated with polyethylene glycol 3. Membrane protein present as a complex with lipids and detergents Input: Results: • Polypeptide sequence • Oligomeric state of the polypeptide • Chemical nature of the modifier • Extend of modification (grams of modifier /gram of polypeptide) “three detector method” Yutaro Hayashi, Hideo Matsui and Toshio Takagi (1989) Methods Enzymol,172:514-28 Jie Wen, Tsutomu Arakawa and John S. Philo (1996) Anal Biochem, 240:155-66 Ewa Folta-Stogniew (2006) Methods in Molecular Biology: New and Emerging Proteomics Techniques, pp. 97–112 Three Detector Method k *(LS)(UV) = p ε (RI)2 MW MWp Molecular Weight (polypeptide) ε extinction coefficient LS light scattering intensity UV absorbance (ε) RI refractive index change k calibration constant Yutaro Hayashi, Hideo Matsui and Toshio Takagi (1989) Methods Enzymol,172:514-28 Jie Wen, Tsutomu Arakawa and John S. Philo (1996) Anal Biochem, 240:155-66 Ewa Folta-Stogniew (2006) Methods in Molecular Biology: New and Emerging Proteomics Techniques, pp. 97–112 Modified proteins: PEG-ylated and Glycoproteins PEG-ylated protein: 75 kDa 36 kDa polypeptide + 39 kDa PEG Polypeptide: 146 kDa (tetramer: 144 kDa) Molar Mass vs. Volume 3.0x10 5 Full protein: 291 kDa Molar Mass (g/mol) 2.5x105 PEG-P_full PEG-P_pp 2.0x105 1.5x105 1.0x105 5.0x104 0.0 8.0 10.0 12.0 14.0 Volume (mL) 16.0 18.0 (tetramer: 300 kDa) PEG-ylated protein: 75 kDa 36 kDa polypeptide + 39 kDa PEG 475 66 kDa Polypeptide: 146 kDa (tetramer: 144 kDa) Molar Mass vs. Volume 5.0x10 5 Full protein: 291 kDa Molar Mass (g/mol) 4.0x105 BSA APO PEG-P_full PEG-P_pp 3.0x105 2.0x105 1.0x105 0.0 8.0 10.0 12.0 14.0 Volume (mL) 16.0 18.0 (tetramer: 300 kDa) Glycoprotein 44.1 kDa polypeptide; unknown level of glycosylation 1 0.20 2 3 Peak ID - Glycoprotein_Aggregates_RI_UV_LS LS #11 AUX1 AUX2 peak UV/RI MMpp (kDa) 1 0.54 90 0.4 122 2 0.52 45 0.4 63 3 0.37 23 1.1 48 0.10 0.05 0.00 -0.05 4.0 6.0 8.0 10.0 Volume (mL) 12.0 14.0 Grams of sugar/gram of polypeptide Full Glycoprotein (kDa) 16.0 Molar Mass vs. Volume polypeptide glycoprotein 2.0x105 220 kDa Full glycoprotein 66 kDa 1.5x105 Polypeptide Molar Mass (g/mol) LS #11, AUX1, AUX2 0.15 1.0x105 5.0x104 0.0 6.0 8.0 10.0 12.0 Volume (mL) 14.0 16.0 Glycosylated peptide: 9.13 kDa; 350 μg Molar Mass vs. Volume Alfa-Lactalbumin Glyco_peptide Glyco_peptide 2.0x104 Peak ID - Glyco_peptide 0.08 LS #11 AUX1 AUX2 0.06 LS #11, AUX1, AUX2 1.0x104 5.0x103 0.0 16.0 0.04 0.02 0.00 18.0 20.0 22.0 24.0 -0.02 16.0 26.0 18.0 20.0 22.0 Volume (mL) Volume (mL) 24.0 26.0 Alfa-lactalbumin 14 kDa; 20 μg 0.020 Peak ID - Alfa-Lactalbumin LS #11 AUX1 AUX2 0.015 LS #11, AUX1, AUX2 Molar Mass (g/mol) 1.5x104 0.010 0.005 0.000 -0.005 20.0 21.0 22.0 Volume (mL) 23.0 Alfa-lactalbumin 14 kDa; 20 μg 24.0 Determination of the oligomeric state of a complex of glycosylated protein+peptide protein 58 kDa extracellular ANP-binding domain (ECD) of cell-surface receptor 16% of mass is sugar dn/dct = 0.179 g/mL 48 kDa ligand polypeptide portion 2.7 kDa atrial natriuretic peptide (ANP) Injected sample complex (ECD : ANP) 2:1 0.07 0.06 156 75 43 kDa 0.05 0.04 0.03 0.02 0.01 0.00 8 9 10 ECD dimer = 2 x 58 = 116 kDa (polypeptide 96 kDa) 11 12 ANP = 2.7 kDa Injected sample complex (ECD : ANP) 2:1 Molar Mass vs. Volume ECD1103A 1.6x105 Molar Mass (g/mol) 156 75 43 kDa 1.2x105 8.0x104 4.0x104 0.0 8.0 9.0 10.0 11.0 12.0 Volume (mL) ECD dimer = 2 x 58 = 116 kDa (polypeptide 96 kDa) ANP = 2.7 kDa ECD-ANP complex; ~3 μg ECD; ~2 μg MWglycoprotein = 103 ± 10 kDa MWglycoprotein = 54 ± 6 kDa MWpolypeptide = 96 ± 7 kDa MWpolypeptide = 44 ± 5 kDa Molar Mass vs. Volume ECD1103A 1.6x105 Molar Mass (g/mol) 156 75 43 kDa 1.2x105 8.0x104 4.0x104 0.0 8.0 9.0 10.0 11.0 12.0 Volume (mL) ECD dimer = 2 x 58 = 116 kDa (polypeptide 96 kDa) ANP = 2.7 kDa Hydrophobic proteins Determination of the oligomeric state of detergent solubilized proteins: polypeptide+lipids+detergent complexes of unknown detergent+lipids content 47 kDa Proteins: 33 kDa porin LamB hemolysin α-HL detergent dodecyl maltoside (C12M) MW = 511 g/mol 0.5g/L i.e. 0.05% CMC = 0.008% micelle size 50-70 kDa trimer = 141 kDa heptamer = 231 kDa porin A280 220 kDa heptamer = 215±20 kDa 66 kDa 43 kDa 1.2 A280 LamB MMpp LamB MMpp α-HL 300 0.8 A280 αHL 200 0.4 100 0.0 0 12 14 16 (141 kDa) trimer = 141±3 kDa hemolysin α-HL 33 kDa 475 kDa LamB 18 elution volume [mL] 20 22 MMpp [kDa] 47 kDa Proteins: (231 kDa) Three Detector Method Yutaro Hayashi, Hideo Matsui and Toshio Takagi Methods Enzymol 1989;172:514-28 allows determination of mass of detergent/lipids bound to a polypeptide ( RI ) ⎛ dn ⎞ = k A ⎜ ⎟ 2 dc (UV ) ⎝ ⎠ app ⎛ dn⎞ ⎜ ⎟ = ⎝ dc ⎠app ⎛ dn⎞ ⎜ ⎟ + ⎝ dc ⎠ pp ⎞ δ ⎛⎜ dn ⎟ dc ⎝ ⎠d +l = K' (RI) ε (UV) δ is mass of detergent and/or lipids per 1 gram of polypeptide Assumption : detergent does not produce any signal in UV = 285 kDa MWcomplex = 271 kDa MWpolypeptide = 141 kDa MWpolypeptide = 215 kDa δ = 1.02 δ = 0.26 lipids per 1 gram of polypeptide lipids per 1 gram of polypeptide 475 kDa 220 kDa 66 kDa A 280 LamB 1.2 δ = 1.02 A280 43 kDa 300 MM complex LamB MM complex α-HL A 280 αHL 0.8 200 δ = 0.26 0.4 100 MMcomplex [kDa] MWcomplex 0 0.0 12 14 16 18 20 22 elution volume [mL] Yernool D, Boudker O., Folta-Stogniew E., and Gouaux E. (2003) Trimeric subunit stoichiometry of the glutamate transporters from Bacillus caldotenax and Bacillus stearothermophilus. Biochemistry 42: 12981-12988 Determination of dimerization constant from SEC-LS measurements SecA protein WT monomer = 102 kDa DS8 deletion mutant monomer = 101 kDa D11 deletion mutant monomer = 100 kDa SecA protein WT 102 kDa DS8 deletion mutant 101 kDa D11 deletion mutant 100 kDa Low salt buffer: High salt buffer: 10 mM Tris pH 7.5, 5 mM Mg2+, 100 mM KCl 10 mM Tris pH 7.5, 5 mM Mg2+, 300 mM KCl Molar Mass vs. Volume Molar Mass vs. Volume DS8_120407e_01_P_N D11_062507a_01_P_N_temp WT_062507a_01_P_N 2.5x105 2.0x105 Mola r Mass (g/mo l) Molar Mass (g/mol) 2.0x105 1.5x105 1.0x105 5.0x104 0.0 12.0 D11_120607e_01_P_N W T _120607e_01_P_N DS8_120607e_01_P_N 2.5x105 1.5x105 1.0x105 5.0x104 14.0 16.0 Volume (mL) 18.0 0.0 12.0 14.0 16.0 Volume (mL) 18.0 D11 deletion mutant mono= 101 kDa High salt buffer: 10 mM Tris pH 7.5, 5 mM Mg2+, 300 Molar Mass vs. Volume 2.5x10 5 mM KCl, 0.71 mg/mlD11_120607c_01_P_N 7.0 μM Mw=106 kDa D11_120607b_01_P_N 0.085 mg/ml 0.83 μM Mw=103 kDa D11_120607a_01_P_N 0.045 mg/ml 0.44 μM Mw=103 kDa 0.019 mg/ml 0.18 μM Mw=102 kDa 1.5x105 1.0x105 5.0x104 MW changes w ith concentration 0.0 12.0 14.0 16.0 Volume (mL) 18.0 220 MW weight average (kDa) Molar Mass (g/mol) 2.0x105 D11 high salt 160 D11 high salt D11 high salt D11 high salt 100 40 0.01 0.1 1 [protein] (uM) 10 100 D11 deletion mutant mono= 101 kDa Low salt buffer: 10 mM Tris pH 7.5, 5 mM Mg2+, 100 2.5x10 5 Molar Mass vs. Volume 0.69 mg/ml 0.17 mg/ml 0.083 mg/ml 0.037 mg/ml 0.014 mg/ml Molar Mass (g/mol) 2.0x10 5 mM KCl, D11_062507b_01_P_N 6.8 μM Mw=163 D11_062507e_01_P_N 1.7 μM Mw=137 D11_062507d_01_P_N kDa kDa Mw=129 kDa Mw=115 kDa Mw=105 kDa 0.81 μM 0.36 μM 0.14 μM 1.5x10 5 1.0x10 5 5.0x10 4 14.0 16.0 Volume (mL) Mw = f m M m + f d M d = M m (2 − f m ) 2M = D (1 − f m ) [ D] Ka = = [ M ]2 2( f m ) 2 ct fm = − 1 + 1 + 8 K a ct 4 K a ct 18.0 220 MW weight average (kDa) 0.0 12.0 MW changes w ith concentration D11 low salt 160 D11 low salt D11 low salt D11 low salt D11 low salt 100 40 0.01 0.1 1 [protein] (uM) 10 100 WT monomer = 102 kDa DS8 deletion mutant monomer = 101 kDa D11 deletion mutant Low salt buffer: monomer = 100 kDa 100 mM KCl High salt buffer: Molar Mass vs. Volume Molar Mass vs. Volume DS8_120407e_01_P_N D11_062507a_01_P_N_temp WT_062507a_01_P_N 2.5x10 5 2.0x105 Molar Mass (g/mol) 1.5x10 5 1.0x10 5 1.5x105 1.0x105 5.0x104 5.0x10 4 0.0 12.0 14.0 16.0 18.0 0.0 12.0 14.0 WT DS8 D11 WT DS8 D11 Kd= <1e-9 Kd=7±1e-8 M Kd=3.5±0.2e-6 M 18.0 Kd= 2.2±0.2e-6 M Kd= 2.41±0.05e-5 M Kd> 2.4e-4 M 240 weight-average MW (kDa) 240 220 200 180 160 140 120 100 80 1e-9 16.0 Volume (mL) Volume (mL) weight-average MW (kDa) D11_120607e_01_P _N W T _120607e_01_P _N DS 8_120607e_01_P _N 2.5x105 2.0x10 5 Molar Mass (g/mol) 300 mM KCl 1e-8 1e-7 1e-6 1e-5 [protein] 1e-4 (M) 1e-3 1e-2 220 200 180 160 140 120 100 80 1e-9 1e-8 1e-7 1e-6 1e-5 [protein] 1e-4 (M) 1e-3 1e-2 Thermodynamic linkage for SecA dimerization Low Salt 100 mM KCl Protein Kd [M] High Salt 300 mM KCl ΔG dimer (kcal/mol) Kd [M] ΔG dimer (kcal/mol) WT <1x10-9 -12.3 2.2±0.2x10-6 -7.7 DS8 7±1x10-8 -9.7 2.41±0.05x10-5 -6.3 D11 3.5±0.2x10-6 -7.4 >2.4x10-4 -4.9 D11 high ΔG = -4.9 kcal/mol -2.5 kcal/mol DS8 high ΔG = -6.3 kcal/mol -2.8 kcal/mol D11 low ΔG = -7.4 kcal/mol WT high ΔG = -7.7 kcal/mol -1.4 kcal/mol -3.4 kcal/mol WT high ΔG = -7.7 kcal/mol -7.4 kcal/mol -6.0 kcal/mol DS8 low ΔG = -9.7 kcal/mol -4.9 kcal/mol -4.6 kcal/mol -4.6 kcal/mol -2.6 kcal/mol WT low ΔG = -12.3 kcal/mol WT low ΔG = -12.3 kcal/mol Capabilities Static LS • fast and accurate determination of molar masses (weight average) – glycosylated protein, conjugated with PEG, protein-lipids-detergent complexes, proteinnucleic acid complexes • accuracy of ± 5% in molar mass determination • easy to implement, fully automated (data collection and data analysis) • highly reproducible (no operator’s bias) • SEC/MALS excellent in detecting and quantifying population with various oligomeric state in protein • excellent approach for determination of oligomeric state of modified proteins and peptides • can be used to determine association constant (concentration gradient measurements) Limitations Static LS • measures weight average molar mass – needs fractionation to resolve different oligomeric states • possible losses of sample during filtration and fractionation • limitation on solvent choices (related to a fractionation step) • SEC/MALS dilution during experiment Ken Williams Director of W.M. Keck Biotechnology Resource Laboratory at Yale University School of Medicine NIH Users of SEC/LS Service http://info.med.yale.edu/wmkeck/biophysics [email protected] http://info.med.yale.edu/wmkeck/biophysics/publications_biophysics_resource.pdf Ovalbumin 43 kDa Aggregates Lower order oligomers angular dependence of scattered light no angular dependence of scattered light 3D Plot - OVA_e_RI 12 18 17 16 15 14 163° 11 10 9 8 7 90° 6 5 4 3 14° Morphology of aggregates from angular dependence of LS signal; size determination- Rg 3D Plot - OVA_e_RI Determination of radius of gyration, Rg, (root mean square radius, R.M.S.,) from angular dependence of scattered light 12 K *c 1 = (1+ (16π 2/ 3 λ2 ) < Rg 2 > sin2 (θ2 ) ) R(θ) Mw Zimm Plot 18 17 16 15 11 14 10 9 8 7 6 5 90° 163° Debye Plot - Ova_b_H_aggregates 6.50x10-8 RMS Radius vs. Volume 6.00x10-8 5.50x10-8 5.00x10-8 4.50x10-8 4.00x10-8 0.0 0.2 0.4 0.6 0.8 sin²(theta/2) Peak, Slice : 1, 944 Volume : 7.867 mL Fit degree : 1 Conc. : (1.915 ± 0.020)e-6 g/mL Mw : (2.277 ± 0.024)e+7 g/mol Radius : 46.8 ± 0.2 nm 1.0 R.M.S. Radius (nm) K*c/R(theta) Ova_122105a_Rg-Rh 1000.0 100.0 10.0 6.0 Radius: 46.8±0.2 nm 7.0 8.0 Volume (mL) 90° & AUX detector 9.0 4 3 14° Inferring conformational information from the relationship between molecular size (Rg) and molecular weight (Molar Mass) Rg ~ M ν RMS Radius vs. Molar Mass log(Rg) versus log(MM) ν ν For Sphere 0.33 Coil 0.5 Rod 1 Rollings, J.E. (1992) in “Laser Light Scattering in Biochemistry”, Eds. S.E. Harding, D. B. Sattelle and V. A. Bloomfield; p. 275-293 R.M.S. Radius (nm) Ova_122105a_Rg-Rh 0.38 ± 0.00 log(Rg) Slope = 1000.0 100.0 10.0 1.0x106 ν = 0.4 1.0x107 1.0x108 Molar Mass (g/mol) log (MM) 1.0x109 Shape analysis: log(Rg) versus log(MM) Aggregates of Ovalbumin vs. “amyloid-type” fibers Molar Mass vs. Volume RMS Radius vs. Molar Mass 1000.0 Molar Mass (g/mol) 1.0x108 Ova_Rg-Rh Amyloids_peak 1.0x107 1.0x10 6 1.0x105 6.0 R.M.S. Radius (nm) 1.0x109 Amyloids_peak 0.75 ± 0.01 Ova_Rg-Rh 0.38 ± 0.00 100.0 ν = 0.8 ν = 0.4 7.0 8.0 9.0 10.0 10.0 1.0x105 1.0x106 Volume (mL) For Sphere ν 0.33 Coil 0.5 Rod 1 1.0x107 1.0x108 Molar Mass (g/mol) 1.0x109 Ova_aggr ν = 0.4 Sphere/Coil Amyloids ν = 0.8 Coil/Rod Shape analysis: shape factor ρ = Rg/Rh Aggregates of Ovalbumin vs. amyloid fibers ρ = Rg/Rh Shape factor: Combination of MALS (Rg) and DLS (Rh) Ovalbumin Amyloids 120 1.4 100 1.2 1 0.6 0.8 Rh 0.6 40 6.5 7 7.5 8 8.5 20 15 Rg Rh 5 0 0 6 9 RI 10 0.2 0 6 25 0.4 20 0 30 Rg 0.4 0.2 1.4 1 RI 60 35 1.2 80 0.8 1.6 7 8 9 10 volume [mL] volume [mL] Rg/Rh = 0.91 Rg/Rh = 1.84 B Rizos, A. K., Spandidos, D. A., and Krambovitis, E., (2003) Int. J. Med., 12, 559-563 Shape analysis: shape factor ρ = Rg/Rh Aggregates of Ovalbumin vs. amyloid fibers ρ = Rg/Rh Shape factor: Combination of MALS (Rg) and DLS (Rh) Ovalbumin 1.4 100 1 0.6 7 7.5 8 8.5 25 20 15 Rg Rh 5 0.2 0 0 6 9 RI 10 0.4 7 8 9 10 volume [mL] volume [mL] Rg/Rh = 0.91 1.732 30 0.6 0 6.5 Rod 1.4 Rh 20 6 0.816 35 0.8 40 0 Coil 1.6 Rg 0.4 0.2 0.774 1 RI 60 Sphere 1.2 80 0.8 ρ = Rg/Rh Amyloids 120 1.2 For Coil Rg/Rh = 1.84 B Rod Rizos, A. K., Spandidos, D. A., and Krambovitis, E., (2003) Int. J. Med., 12, 559-563 Shape analysis: Rg ~ M ν ρ = Rg/Rh ν For Sphere Coil Rod 0.33 0.5 1 Ovalbumin 1.4 100 1 0.6 7 7.5 8 8.5 1.732 30 0.6 0 6.5 Rod 1.4 Rh 20 6 0.816 35 0.8 40 0 Coil 1.6 Rg 0.4 0.2 0.774 25 1 RI 60 Sphere 1.2 80 0.8 ρ = Rg/Rh Amyloids 120 1.2 For 9 20 15 Ova_aggr ν = 0.4 Rg Rh 10 0.4 5 0.2 0 0 6 7 8 9 10 volume [mL] volume [mL] Rg/Rh = 0.91 RI Coil Sphere/Coil Rg/Rh = 1.84 Amyloids ν = 0.8 Rod Coil/Rod Shape analysis: shape factor ρ = Rg/Rh ρ = Rg/Rh = 1.84 log(Rg) versus log(MM) Slope = ν Amyloids TABLE 1 Summary of scaling exponents and average -ratio values c aCgn c Avg Rod ν = 0.8 Coil/Rod a ρ−ratio m (ν) m –0.3 ± 0.1 –0.27 ± 0.07 1.65 ± 0.1 0.74 ± 0.16 0.64 ± 0.12 –1.13 ± 0.34 –1.25 ± 0.34 1.76 ± 0.13 0.74 ± 0.15 0.8 ± 0.4 ( -chymotrypsinogen A) bG-CSF (bovine granulocyte-colony stimulating factor) a Weiss W F, IV, Hodgdon T. K., Kaler E. W., Lenhoff A. M., and Roberts C. J. (2007) Nonnative Protein Polymers: Structure, Morphology, and Relation to Nucleation and Growth. Biophysical Journal 93: 4392-4403 Cryo-TEM micrograph of aCgn samples (c0 = 1 mg/mL) at m = 0.05 Weiss W F, IV, Hodgdon T. K., Kaler E. W., Lenhoff A. M., and Roberts C. J. (2007) Nonnative Protein Polymers: Structure, Morphology, and Relation to Nucleation and Growth. Biophysical Journal 93: 4392-4403 Molar Mass Distribution Plot BSA 66 kDa Shape information from light scattering measurements 156 kDa 40.3 kDa 43 kDa Protein “F” Molar Mass vs. Volume Ald0624a_01_P FLK06245b_01_P OVA0624a_01_P Molar Mass (g/mol) 1.6x10 5 1.2x10 5 8.0x10 4 4.0x10 4 0.0 10.0 12.0 14.0 Volume (mL) 16.0 Protein “F” frictional ratio Rh/Rs = 1.85 40.3 kDa Rh = 4.2 nm non-spherical shape 156 kDa Rh = 4.2 nm 43 kDa Rh = 2.9 nm Shape Effects Hydrodynamic Radius vs. Volume Hydrodynamic Radius (nm) 10.0 8.0 FLK06245b_01_P Ald0624a_01_P OVA0624a_01_P 4 fold difference in mass – same hydrodynamic size 6.0 4.0 2.0 0.0 10.0 12.0 14.0 Volume (mL) 16.0 • Batch Mode Light Scattering Applications – Detection of aggregates in DLS and SLS measurement Batch Mode Static MALLS experiment Monomer 14 kDa Strip Chart - Sample1_2_aggregates 0.5 -5 8.50x10 Sample 1 Detector: 11 0.4 -5 8.00x10 -5 7.50x10 Sample 2 0.3 -5 7.00x10 0.2 -5 6.50x10 0.1 -5 6.00x10 0.0 0.2 0.4 0.0 5.0 0.8 1.0 0.8 1.0 sin²(Θ/2) -6 7.00x10 4.0 Detector: AUX1 0.6 3.0 -6 6.00x10 2.0 -6 5.00x10 1.0 -6 4.00x10 0.0 -1.0 0.0 4.0 8.0 12.0 -6 3.00x10 0.0 0.2 0.4 sin²(Θ/2) Volume (mL) Sample 0.6 Weight Average MM, Mw ± SD* [kDa] RMS [nm] 1 15 ± 1 0 2 126 ± 8 56 ± 10 Angular dependence of scattered light clearly indicates presence of aggregates Determination of hydrodynamic radius, Rh, from a Dynamic LS experiment Ovalbumin; monomer: 43 kDa; Rh=3.0 nm Rh = 8±7 nm from Cumulant Fit (Polydispersity 93%) Regularization Fit: Peak Rh (nm) Polydispersity (%) MW (R) kDa % Intensity % Mass 1 3.1 12.8 46 54 99.9 2 24 17.8 >1MDa 23 0.1 3 86 13.4 >1MDa 23 <0.1 Dissociation of aggregates upon dilution; time course Protein H 23 kDa; Rh=2.3 nm Rh=94 nm Rh=2.8 nm Rh=23 nm Rh=2.3 nm; Pd=42% 88% monomer Ovalbumin 43 kDa 8% dimer 1.5% trimer 3% aggregates < 1MDa Strip Chart - OVA_b_UV_traces 2.0 0.4% 1-100 MDa Detector: AUX1 1.5 1.0 UV at 280 nm ? 0.5 0.0 -0.5 1.0 0.4% 1-100 MDa Detector: 11 0.8 0.6 LS at 90 deg 0.4 0.2 0 10 20 Volume (mL) 30 Intensity of scattered light ~ Mw*c due to their high Mw aggregates scatter very strongly A monomeric protein 43 kDa and aggregates 10 MDa at 2 mg/mL: Intensity of LS signal Changes in intensity of scattered light due to aggregates presence 3 intensity monomer 2 intentisty aggregates 1 0 0.0% total intensity 0.5% % (w /w ) aggregates 1.0% Why Light Scattering? •LS measurements are non-invasive and non-destructive •small sample volumes •great dynamic range for sizing: hydrodynamic radii ~ 2nm to 500 nm •great dynamic range for Mw determination: < 1kDa to >10 MDa •wide range of concentrations (non-ideality can be addressed through the determination of second virial coefficient) •perfectly suited for determination of oligomeric state of modified proteins without prior knowledge of extend of modification (glycosylated proteins, proteins modified by polyethylene glycol, or membrane proteins present as complexes with lipids and detergents) •LS measurements are perfect tools for detection and characterization of aggregates •Scattering Intensity, R(Θ)~ Mw*c because of their big Mw, aggregates scatter strongly even when present at low concentrations; easily detectable •Angular variation of the scattered light is related to the size and shape of the molecule the light scattering signal from aggregates will show angular dependence, while LS signal produces by lower order oligomers like dimers, trimers, tetramers, et c. will not Various uses of Light Scattering for assessing protein aggregates Experiment Detects Aggregates Information about population (distribution) Challenge in use Sample dilution Speed DLS Yes No Low No Fast Micro-batch MALS Yes No High No Medium Yes Medium Yes Medium SEC/MALLS/DLS Yes Determination of hydrodynamic radius, Rh, from a Dynamic LS experiment Ovalbumin; monomer: 43 kDa; Rh=3.0 nm Rh = 8±7 nm from Cumulant Fit (Polydispersity 93%) Regularization Fit: Peak Rh (nm) Polydispersity (%) MW (R) kDa % Intensity % Mass 1 3.1 12.8 46 54 99.9 2 24 17.8 >1MDa 23 0.1 3 86 13.4 >1MDa 23 <0.1 Results from a batch mode Dynamic LS experiment: Ovalbumin 43 kDa; Rh=3.0 nm Rh = 3.2±0.6 nm from Cumulant Fit (Polydispersity 19%) Regularization Fit: Peak Rh (nm) Polydispersity (%) MW (R) kDa % Intensity % Mass 1 3.1 12.9 46 96 100 2 32 0 >1MDa 2 0 3 2423 0 >1MDa 2 0 ) MW p = k * ( LS )(UV 2 ε ( RI ) y = 92.383x - 3.4044 Three-detector calibration 10-17-01 MW (kDa) Ova 43 BSA(1) 66 BSA(2) 132 Ald 156 Apo-Fer 475 500 400 MW [kDa] Protein 2 R = 0.9996 300 experimental MWp 200 Linear (theoretical MWp) 100 0 0 2 4 ratio (LS)*(UV)/(A*(RI^2)) 6 Flow Mode Light Scattering Applications – Molar mass distributions and differences in populations – Determination of an oligomeric state of modified proteins and oligos from SEC-LS/UV/RI measurement – Determination of dimerization constant from SEC-LS measurements LS @ 90 degree RI UV @ 280 nm 0.8 Peak ID - PRNC__DC 90° AUX1 AUX2 AUX, 90° Detector 0.6 0.4 0.2 0.0 -0.2 10.0 12.0 14.0 16.0 Volume (mL) 18.0 20.0 Protein “F” frictional ratio P= Rh/Rs = 1.85 non-spherical shape Axial ratio a/b (prolate) = 16.6 (oblate) = 22.9 40.3 kDa 156 kDa 43 kDa Rh = 4.2 nm Rh = 4.2 nm Rh = 2.9 nm Hydrodynamic Radius vs. Volume FLK06245b_01_P Ald0624a_01_P OVA0624a_01_P Hydrodynamic Radius (nm) 10.0 8.0 4 fold difference in mass – same hydrodynamic size 6.0 4.0 2.0 0.0 10.0 12.0 14.0 Volume (mL) Harding S E, Longman E., Carrasco B., Ortega A., and de la Torre J. G. (2004) Studying antibody conformations by ultracentrifugation and hydrodynamic modeling. Methods Mol Biol 248: 93-113 16.0 Determination of Mw and second virial coefficient from Zimm plot analysis of light scattering data. Baselines - BSA_A2_H 10.0 8.0 Zimm Plot - BSA_A2_H 1.72x10-5 K*c/R(theta) K*c/R(theta) LS signal at 90º Detector: 11 1.76x10-5 6.0 1.68x10-5 4.0 1.64x10-5 2.0 0.0 0.0 2.0 4.0 6.0 Volume (mL) 1.60x10-5 0.0 8.0 RMS : 4.8 ± 1.4 nm MM : (6.180 ± 0.014)e+4 g/mol A2 : (5.226 ± 0.316)e-4 mol mL/g² 0.5 1.0 1.5 2.0 sin²(theta/2) + 1085*c BSA solutions at concentrations: 0.22, 0.44, 0.75 and 1.1 mg/mL and the data were analyzed using Zimm formalism Mw B 65 (5.226 ± 0.316)e-4 mol mL/g² • Batch Mode Light Scattering Applications – Detection of aggregates in DLS and SLS measurement Determination of Molar Mass and second virial coefficient from a batch static LS experiment BSA 66 kDa 10.0 Baselines - BSA_A2_H K *c 1 = + 2 A2c R (θ ) MwP (θ ) K*c/R(theta) 1.72x10-5 6.0 1.68x10-5 4.0 A2 1.64x10-5 2.0 0.0 0.0 Zimm Plot - BSA_A2_H R(Θ) LS signal at 90º 8.0 Detector: 11 -5 1.76x10 K*c 2.0 4.0 Volume (mL) 6.0 1.60x10-5 0.0 8.0 0.5 RMS : 4.8 ± 1.4 nm MM : (6.180 ± 0.014)e+4 g/mol A2 : (5.226 ± 0.316)e-4 mol mL/g² 1.0 1.5 2.0 and Rh from DLS sin²(theta/2) + 1085*c 1.30 Zimm plot analysis of static light scattering data 1.20 Temperature : 27.831 °C Rh : 3.4 nm 1.10 Mw = 62 kDa A2 = (5.226 ± 0.316)e-4 mol mL/g² 1.00 0.90 -7 1.0x10 B. H. Zimm, (1948) J. Chem. Phys., 16, 1099 -6 1.0x10 -5 1.0x10 -4 1.0x10 -3 1.0x10 -2 1.0x10 Delay time (sec.) -1 1.0x10 0 1.0x10 1 1.0x10 Batch Mode Static MALLS experiment Monomer 14 kDa Strip Chart - Sample1_2_aggregates 0.5 -5 8.50x10 Sample 1 Detector: 11 0.4 -5 8.00x10 -5 7.50x10 Sample 2 0.3 -5 7.00x10 0.2 -5 6.50x10 0.1 -5 6.00x10 0.0 0.2 0.4 0.0 5.0 0.8 1.0 0.8 1.0 sin²(Θ/2) -6 7.00x10 4.0 Detector: AUX1 0.6 3.0 -6 6.00x10 2.0 -6 5.00x10 1.0 -6 4.00x10 0.0 -1.0 0.0 4.0 8.0 12.0 -6 3.00x10 0.0 0.2 0.4 sin²(Θ/2) Volume (mL) Sample 0.6 Weight Average MM, Mw ± SD* [kDa] RMS [nm] 1 15 ± 1 0 2 126 ± 8 56 ± 10 Angular dependence of scattered light clearly indicates presence of aggregates Determination of hydrodynamic radius, Rh, from a Dynamic LS experiment Ovalbumin; monomer: 43 kDa; Rh=3.0 nm Rh = 8±7 nm from Cumulant Fit (Polydispersity 93%) Regularization Fit: Peak Rh (nm) Polydispersity (%) MW (R) kDa % Intensity % Mass 1 3.1 12.8 46 54 99.9 2 24 17.8 >1MDa 23 0.1 3 86 13.4 >1MDa 23 <0.1 Dissociation of aggregates upon dilution; time course Protein H 23 kDa; Rh=2.3 nm Rh=94 nm Rh=2.8 nm Rh=23 nm Rh=2.3 nm; Pd=42% Feature detected in a batch mode LS measurements for sample containing aggregates • Static (classical) • Dynamic (quasielastic) Aggregates present: Aggregates present: • elevated weight average Molar Mass • autocorrelation function cannot be described by single exponential (cumulant fit) (Mw weight average) • angular dependence in scattered light • polydispersity from cumulant fit >15% Missing information: how much and what size? Solutions • Sample fractionation followed by batch measurements • Column separation with simultaneous LS characterization PEG-ylated oligo Molar Mass vs. Volume PEG40_TSK4000_112905b_02... S2_112905a_P_N_full 5.6x10 4 PEG (40K) Molar Mass (g/mol) 5.2x10 4 (80 μg total) Polydispersity= 1.001 4.8x10 4 40K PEG + 12.9 kDa oligo 4.4x10 4 PEG-oligo 4.0x10 4 3.6x10 4 6.0 MM = 41.0 kDa 7.0 8.0 (73 μg total) MM = 52.1 kDa 9.0 Volume (mL) BSA 66 kDa Molar Mass vs. Volume 5.2x104 DNA_S1_280nm_11290 PEG40_112905b Molar Mass (g/mol) 4.8x104 PEG (40K) (40 μg total) Polydispersity= 1.001 4.4x104 40K PEG + 8.3 kDa oligo 4.0x104 PEG-oligo 3.6x104 6.0 MM = 41.0 kDa 7.0 8.0 Volume (mL) 9.0 MM = 48.5 kDa (70 μg total)
© Copyright 2026 Paperzz