Algal community patterns in Slovenian bogs along

Biologia 65/3: 422—437, 2010
Section Botany
DOI: 10.2478/s11756-010-0033-7
Algal community patterns in Slovenian bogs
along environmental gradients
Aleksandra Krivograd Klemenčič1, Nataša Smolar-Žvanut2, Darja Istenič3
& Tjaša Griessler-Bulc1
1
University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, Bogišičeva 8, 1000 Ljubljana, Slovenia; e-mail:
[email protected]
2
Institut for Water of the Republic of Slovenia, Hajdrihova 28, 1000 Ljubljana, Slovenia
3
Limnos Company for Applied Ecology Ltd, Podlimbarskega 31, 1000 Ljubljana, Slovenia
Abstract: In 2005 and 2006, epiphyton samples were collected from seven lowland and montane peat bogs in Slovenia.
Water temperature, pH, conductivity, dissolved oxygen and saturation were measured at the same time. Diatoms, desmids
and Cyanobacteria were the most abundand groups in species number. Canonical Correspondence Analysis (CCA) was
carried out on Cyanobacteria, diatom and desmid flora composition. This analysis showed that shading was the most
important parameter in Cyanobacteria distribution and bedrock the most important one in that of diatoms and desmids.
Cluster analyses were carried out based on the Cyanobacteria, diatom and desmid data. The Cyanobacteria and diatom
data separated sites, whereas the desmid data revealed a temporal aspect.
Key words: Cyanobacteria; diatoms; desmids; epiphyton; peat bogs; ecology; Slovenia
Introduction
Sphagnum bogs and related mire communities represent one of the major vegetation types beside forests
and grasslands at higher latitudes of the Northern hemisphere and they are, even though not that characteristic, abundant in the cooler and wet temperate regions
(Borics et al. 2003). In Slovenia, sphagnum bogs occur sporadically due to edaphic reasons. Marshy ecosystems are endangered in Slovenia the same way as in all
of Europe (Mulec et al. 2005). Raised bogs are situated in the montane zone of Julian Alps and Pohorje
and well protected. Lowland raised bogs are almost all
destructed except several small areas in Central Slovenia. Transitional bogs and fens are more endargened.
They are surrounded by meadows, other agricultural
land or urbanized industrial zones. Sphagnum bogs are
quite well investigated in Poland (Pietryka 2000), Austria (Rauch et al. 2005), Italy (Dell’Uomo et al. 1992;
Dell’Uomo & Pellegrini 1993), Czech Republic (Lederer
1999; Neustupa et al. 2002; Poulíčková et al. 2005) and
Spain (Cambra & Hindák 1998). Despite their high biodiversity, the algae in peat bogs are poorly examined in
Slovenia. Prior to this study, only Pevalek (1924), Lazar
(1960, 1975) and Krivograd & Vrhovšek (2003) examined the algae in Slovenian peat bogs and fens. Diatoms
were not included in the first two studies. The present
study represents the first investigation of algae in the
c
2010
Institute of Botany, Slovak Academy of Sciences
bog-lake of Črno jezero at the Pohorje montane range
(the only lake with acidic pH in Slovenia), the bog of
Žejna dolina and the bog at Holmec.
Bogs are important ecosystems for the conservation of biodiversity in Europe (Succow & Joosten 2001).
However, many bogs have been destroyed by human
activities, such as peat extraction, land reclamation
or drainage of ground water for development purposes
(Rauch et al. 2006). An ecosystem approach based both
on biological and hydrological studies is necessary for
the conservation of these landscapes. In peat bogs, diversity of some groups of algae (desmids) can be very
high and many taxa appear to be restricted to these
habitats (Lenzenweger 1996, 1997, 1999).
In this study, the epiphyton species composition,
relative abundance and environmental factors (pH,
temperature, conductivity, oxygen saturation, dissolved
oxygen, bedrock, shading, altitude) in seven peat bogs
in Slovenia have been studied. An initial standing assumption is that spatial and temporal differences in the
predominant extreme environmental conditions of selected environments can affect the occurence, relative
abundances of different epiphyton species and, in addition, influence a specific epiphyton community composition. Direct gradient analysis allowed us to study
a part of the variation in community composition that
can be explained by a particular set of environmental
variables.
Unauthenticated
Download Date | 6/14/17 6:04 PM
Algal community patterns in Slovenian bogs
Material and methods
Study area
Bog I is a small montane fen at Pohorje with a free-water
surface. The bog is surrrounded by a pine forest (Picea abies
L. Karst). During the sampling period, there were a lot
of wood residues and dead plant matter in the bog, while
the peat moss was present only along the margins. Besides
the precipitation, the bog is supplied by a source. Sampling
and measuring environmental parameters was performed on
27.4.2005, 6.8.2005, 4.11.2005 and 28.5.2006.
Bog II is a small montane fen at Pohorje with a free-water
surface, located close to the macadam road. The bog is surrounded by a pine forest (Picea abies). During the sampling
period, the bog was filled with peat moss and rush (Juncus effusus L.). The bog is fed by precipitation. Sampling
and measuring environmental parameters was performed on
21.5.2005, 6.8.2005 and 28.5.2006.
The bog-lake Črno jezero at Pohorje is an artificial
montane retarding basin, used in the past for floating the
timber to the valley. The bog is surrounded by a belt of bottle sedge community (Caricetum rostratae Osvald), passing
into a belt of montane pine (Pinus mugo Turra) and further
to a pine forest (Picea abies). The bog-lake is fed by precipitation and four brooks. Sampling and measuring environmental parameters was performed on 21.5.2005, 6.8.2005,
4.11.2005 and 28.5.2006.
The bog of Žejna dolina is a lowland fen. Small pools
with Sphagnum on the margins are located between trees
(Salix sp., Pinus nigra Arnold). Besides the precipitation,
the bog is supplied by a source. Submerged macrophytes are
present in the small pools. Sampling and measuring environmental parameters was performed on 13.5.2005, 19.8.2005,
9.11.2005 and 16.6.2006.
The bog at Holmec is a lowland peat bog surrounded by
a pine forest (Picea abies). The majority of the bog area
is overgrown by Typha latifolia L. and Menyanthes trifoliata L. The bog has no free-water surface and it is supplied
by precipitation and groundwater. Sampling and measuring environmental parameters was performed on 8.5.2005,
24.7.2005, 31.10.2005 and 25.3.2006.
The bog of Mali plac in Ljubljana Marsh is a lowland
bog. A live bog with stagnant water where peat could form
no longer exists. The peat moss is present only in the western part of the bog. Typhetum latifoliae Lang is the dominating community. The bog has a free-water surface and
it is supplied by a brook. Sampling and measuring environmental parameters was performed on 23.1.2005, 26.5.2005,
19.8.2005, and 9.11.2005.
The bog of Ledina at Jelovica is a montane peat bog resulting from the owergrowing of a deeper lake. The remainder of the lake is a small water body surrounded by peat
moss. Submerged macrophytes are also present. The bog is
supplied by precipitation and three brooks; there is no contact with groundwater. Sampling and measuring environmental parameters was performed on 28.6.2005, 9.9.2005,
16.11.2005 and 22.6.2006.
Sampling and sample processing
Qualitative samples of epiphyton were taken in different seasons once per season in 2005 and 2006 in seven peat bogs
423
Table 1. Scale for estimation of algal taxa abundance (Pantle &
Buck 1955).
Relative abundance
Taxa present in % of visual fields
1 – single
3 – customary
5 – dominant
1–15
>15–60
>60–100
in Slovenia. Four samples were taken in each peat bog, except at the sampling point 2 where only three samples were
taken due to the desiccation of the peat bog. The algal samples were squeezed out of water mosses. At the same time,
the water temperature, pH, conductivity, dissolved oxygen
and saturation were measured by the WTW Multiline/F
meters. For identification we followed: Starmach (1966–
1983), Hortobágyi (1973), Ettl (1978, 1983), Hindák et al.
(1978), Rieth (1980), Krammer & Lange-Bertalot (1997–
2004), Popovsky & Pfiester (1990), Hindák (1996, 2006),
Lenzenweger (1996–2003), Krammer (2000), Komárek &
Anagnostidis (1998, 2005) and Wolowski & Hindák (2005).
The algal taxa were identified directly from living material.
The diatoms were examined after preparation according to
Schaumburg et al. (2004). Light microscopes Nikon Eclipse
E400 and Nikon Eclipse TE300 were used to determine the
taxa. The relative abundances of algal taxa (Table 1) were
estimated by the numbers 1, 3 and 5 (1–single, 3–customary,
5–dominant) (Pantle & Buck 1955). We assesed abundance
of diatom taxa from permanent slides (Schaumburg et al.
2004) and abundance of taxa from other algal groups from
living material.
Data analysis
A cluster analysis comparing dates (Bray-Curtis coefficient
of similarity) was performed on the matrixes of relative
abundance estimations using the programme CLUSTER
(Šiško 2003). The relative abundance estimations and the
environmental data (Table 2) were analysed by the canonical corresponding analysis (CCA), using the programme
CANOCO for Windows 4.5 (ter Braak & Šmilauer 2002).
We did not use any transformation of the environmental
data.
Results and discussion
General description
The analysis of epiphyton data showed a high species
number in most of the peat bogs included in the study
(Table 3). Bacillariophyceae, Desmidiales (Zygnematophyceae) and Cyanobacteria were the groups which
contributed most to the high species number. In total, 337 taxa and 10 algal classes were identified in all
seven peat bogs (Table 3). By the number of identified
taxa, diatoms prevailed with 157 (47%) taxa, followed
by Zygnematophyceae with 75 (22%), Cyanobacteria
with 50 (15%), Chlorophyceae with 35 (10%), Xanthophyceae with 8 (2%), Dinophyceae with 3 (1%), Chrysophyceae with 3 (1%), Euglenophyceae with 3 (1%),
Charophyceae with 1 (0.5%) and Florideophyceae also
with 1 taxa (0.5%). With respect to the identified taxa,
diatoms dominated in all seven bogs (Table 3), followed by Zygnematophyceae (Desmidiales) in the bogUnauthenticated
Download Date | 6/14/17 6:04 PM
424
A. Krivograd Klemenčič et al.
Table 2. Characteristics of the sampling sites studied. Legend: 1 – the bog I, 2 – the bog II, 3 – the bog-lake Črno jezero, 4 – the bog
of Žejna dolina, 5 – the bog at Holmec, 6 – the bog of Mali plac in Ljubljana Marsh, 7 – the bog of Ledina at Jelovica; bedrock: 1 –
silicate, 2 – limestone; shading: 1 – no shade; 2 – partly shaded; 3 – intensive shade. With asterisk are marked environmental variables
used in CCA analysis.
Samp- Bog Coordinates Surface Depth of
ling
types (after Gauss- area
water
site
Krüger)
[m2 ] column [m]
1
fen
2
fen
3
4
bog
lake
fen
5
bog
6
bog
7
bog
X=5537800
Y=5148400
X=5535746
Y=5143880
X=5535290
Y=5144800
X=5435660
Y=5089110
X=5491240
Y=5156900
X=5452400
Y=5094400
X=5431535
Y=5124542
*pH
*T
[ ◦C]
*Conductivity *Dissolved *Saturation *Bed- *Shading *Altitude
χ [µS/cm]
[mg/L]
[%]
rock
[m]
70
0.4
7.0–7.1 7.3–13.9
53–60
2.71–8.07
32.1–75.8
1
3
1090
4
0.1
6.4–7.6 10.2–13.4
131–174
5.52–6.63
59.0–70.8
1
2
1225
560000
/
5.1–6.2 9.4–20.5
24–36
7.27–9.14
90.2–97.1
1
1
1200
5000
0,2
7.0–7.9 9.3–14.2
188–441
6.84–8.38
61.4–101.0
2
1
550
20000
0,3
5.1–5.6 3.0–10.6
58–110
0.19–9.53
5.7–80.2
1
2
488
15000
/
6.5–6.8 0.9–22.2
115–194
1.05–2.22
9.1–17.7
2
3
310
23000
1
5.5–6.7 4.6–25.0
65–211
0.45–2.69
6.5–24.3
2
1
1150
lake Črno jezero, the bog of Žejna dolina, the bog at
Holmec and the bog of Ledina, Chlorophyceae in the
bogs I and II and Cyanobacteria in the bog of Mali plac.
Bogs I and II are located near a track paved by limestone gravel, which could be the reason for higher pH
values and different algal composition with less desmids
and more green algae. Similar effect of limestone gravel
on algal composition in a montane bog was observed by
Soukupová et al. (2001). The bog of Mali plac in Ljubljana Marsh used to be a real peat bog until 1993 when
the runoff was changed, which resulted in a considerable
rise of water level. Subsequently the water drained, but
substantial changes occured in vegetation, peat moss
largely disappeared, remaining to a lesser extent only
in the western part of the bog, which was most likely the
reason for a low number of desmid group members. Diatoms and desmids are usually dominant in bog waters
(Mataloni & Tell 1996; Watanabe et al. 2000; Krivograd
Klemenčič & Vrhovšek 2003; Negro et al. 2003; Borics
et al. 2003; Muñoz et al. 2003). Cyanobacteria are
normally a good indicator of eutrophication; however,
other authors report that Cyanobacteria are also an important component of algal communities in oligotrophic
environments (Krivograd Klemenčič & Vrhovšek 2003;
Muñoz et al. 2003, Borics et al. 2003; Rauch et al.
2006). Cyanobacteria, which strongly colour the water,
are the most important group of algae in waters with
high concentration of organic matter. Due to low light
intensity in such waters and facultative heterotrophy,
the Cyanobacteria have an advantage over the eucariontic algae (Muñoz et al. 2003). The representatives
of class Chlorophyceae were present in all seven bogs,
with the largest number of species in the bog II, the
bog-lake Črno jezero and the bog at Holmec. In the
lake of Črno jezero, the dominant species in May 2005
was Microspora pachyderma (Wille) Lagerheim, with
frequent occurrence of the species Stigeoclonium tenue
Kützing (the bog I, the bog-lake Črno jezero, the bog of
Mali plac), the species of the genus Oedogonium Hirn
(the bog I, the bog-lake Črno jezero, the bog of Ledina),
Draparnaldia plumosa (Vaucher) Agardh (the bog-lake
Črno jezero) and Chlamydomonas Ehrenberg (the bog
II). Presence of taxa Stigeoclonium Kützing, Oedogonium and Chlamydomonas point to an increased quantity of nutrients in oligotrophic bogs at low pH values. Pietryka (2000) reports on the occurrence of Microspora pachyderma species in peat bogs in Poland.
Three taxa of the Dinophyceae were identified in the investigated peat bogs: Amphidinium sphagnicola Conrad
was present in the bog of Žejna dolina. The species in
the genus Gymnodinium Stein were massively present
in May in the bog at Holmec and in January in the
bog of Mali plac. The Peridinium Ehrenberg was identified in the bog II. Graham et al. (2004) report on massive occurrence of species of the genera Gymnodinium
and Peridinium in a peat bog (Wisconsin, USA), but
the mentioned genera are characteristic also of European bogs (Nováková 2002; Muñoz et al. 2003; Rauch
et al. 2006). Only some algal taxa were identified of
the Euglenophyceae, Xanthophyceae, Chrysophyceae,
Florideophyceae and Charophyceae. The representatives of the Euglenophyceae were present in the bog
II, the bog-lake Črno jezero and the bog at Holmec.
Euglenophyceae are characteristic of eutrophic waters
(Wolowski & Hindák 2005), but they are often present
also in oligotrophic peat bogs (Mataloni & Tell 1996;
Watanabe et al. 2000; Muõz et al. 2003; Borics et al.
2003; Rauch et al. 2006). The presence of the Euglenophyta representatives in oligotrophic waters can be explained by their ability of active movement which allows them to reach the optimum light conditions and
concentration of nutrients (Muñoz et al. 2003).
Cyanobacteria
Among 50 identified Cyanobacteria taxa 33 taxa were
found in Slovenian bogs by Pevalek (1924), Lazar (1960,
Unauthenticated
Download Date | 6/14/17 6:04 PM
Algal community patterns in Slovenian bogs
425
Table 3. Species list in all the studied peat bogs with acronyms of taxa used in the CCA analysis and with relative abundance
estimation (1 – single, 3 – customary, 5 – dominant). Legend: 1 – the bog I, 2 – the bog II, 3 – the bog-lake Črno jezero, 4 – the bog
of Žejna dolina, 5 – the bog at Holmec, 6 – the bog of Mali plac in Ljubljana Marsh, 7 – the bog of Ledina at Jelovica.
Sampling site
Taxa
CYANOBACTERIA
Anabaena augstumnalis Schmidle
Anabaena spp.
Aphanocapsa grevillei (Berkeley) Rabenhorst
Aphanocapsa hyalina (Lyngbye) Hansgirg
Aphanocapsa parasitica (Kützing) Komárek & Anagnostidis
Aphanothece microscopica Nägeli
Aphanothece saxicola Nägeli
Aphanothece stagnina (Sprengel) A. Braun
Calothrix spp.
Calothrix minima Frémy
Calothrix weberi Schmidle
Chroococcus limneticus Lemmermann
Chroococcus membraninus (Meneghini) Nägeli
Chroococcus obliteratus Richter
Chroococcus prescottii Drouet & Daily
Chroococcus quaternarius Zalessky
Chroococcus turgidus (Kützing) Nägeli
Coelomoron pusillum (Van Goor) Komárek
Cyanothece major (Schröter) Komárek
Cylindrospermum sp.
Geitlerinema splendidum (Greville ex Gomont) Anagnostidis
Gloeocapsa magma (Brébisson) Hollerbach
Gloeocapsopsis magma (Brébisson) Komárek & Anagnostidis
Gomphosphaeria aponina Kützing
Heterolebleinia spp.
Leptolyngbya spp.
Limnothrix redekei (Van Goor) Meffert
Merismopedia hyalina (Ehrenberg) Kützing
Merismopedia punctata Meyen
Microcystis wesenbergii (Komárek) Komárek
Nostoc commune Vaucher
Nostoc paludosum Kützing
Nostoc verrucosum Vaucher
Oscillatoria anguina (Bory) Gomont
Oscillatoria princeps Vaucher
Oscillatoria subbrevis Schmidle
Oscillatoria tenuis Agardh ex Gomont
Phormidium amoenum Kützing
Phormidium breve (Kützing ex Gomont) Anagnostidis & Komárek
Phormidium formosum (Bory) Anagnostidis & Komárek
Phormidium interruptum Kützing
Phormidium spp.
Pseudanabaena biceps Böcher
Pseudanabaena catenata Lauterborn
Pseudanabaena sp.
Tolypothrix sp.
Tychonema bornetii (Zukal) Anagnostidis & Komárek
Woronichinia elorantae Komárek & Komárková-Legnerová
Woronichinia robusta (Skuja) Komárek & Hindák
Woronichinia sp.
EUGLENOPHYTA
EUGLENOPHYCEAE
Euglena spp.
Euglena anabaena Mainx
Phacus alatus Klebs
DINOPHYTA
DINOPHYCEAE
Amphidinium sphagnicola Conrad
Gymnodinium spp.
Peridinium sp.
HETEROKONTHOPHYTA
XANTHOPHYCEAE
Botryochloris minima Pascher
Characiopsis anas Pascher
Characiopsis tuba (Hermann) Lemmermann
Gloeobotrys bichlorus Ettl
Label
Ana aug
Ana sp.
Aph gre
Aph hyl
Aph par
Aph mic
Aph sax
Aph sta
Cal spp.
Cal min
Cal web
Chr lim
Chr mem
Chr obl
Chr pre
Chr qua
Chr tur
Coe pus
Cya maj
Cyl sp.
Gei spl
Glo mag
Gloe mag
Gom apo
Het spp.
Lep spp.
Lim red
Mer hya
Mer pun
Mic wes
Nos com
Nos pal
Nos ver
Osc ang
Osc pri
Osc sub
Osc ten
Pho amo
Pho bre
Pho for
Pho int
Pho spp.
Pse bic
Pse cat
Pse sp.
Tol sp.
Tyc bor
Wor elo
Wor rob
Wor sp.
1
2
1
1
3
4
5
6
7
1
1
1
3
1
1
1
1
1
1
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
1
3
1
1
1
3
1
1
1
1
1
1
1
1
1
1
1
1
5
1
1
1
1
1
3
3
3
1
1
1
1
3
3
1
1
1
1
1
1
5
5
1
1
1
1
1
1
1
Unauthenticated
Download Date | 6/14/17 6:04 PM
426
A. Krivograd Klemenčič et al.
Table 3. (continued)
Sampling site
Taxa
Ophiocytium cochleare A. Braun
Ophiocytium lagerheimii Lemmermann
Tribonema affine West
Vaucheria spp.
CHRYSOPHYCEAE
Dinobryon sertularia Ehrenberg
Stylopyxis sp.
Synura uvella Ehrenberg
BACILLARIOPHYCEAE
Achnanthes coarctata (Brébisson) Grunow
Achnanthes flexella (Kützing) Brun
Achnanthes hungarica (Grunow) Grunow
Achnanthes laevis Oestrup
Achnanthes lanceolata (Brébisson) Grunow
Achnanthes minutissima Kützing
Achnanthes petersenii Hustedt
Achnanthes spp.
Achnanthes subatomoides (Hustedt) Lange-Bertalot
Adlafia bryophila (J.B.Petersen) Gerd Moser, Lange-Bert. & Metz.
Adlafia minuscula (Grunow) Lange-Bert.
Amphipleura pellucida (Kützing) Kützing
Amphora ovalis var. libyca (Ehrenberg) Cleve
Amphora pediculus (Kützing) Grunow
Anomoeoneis brachysira (Brébisson) Grunow
Anomoeoneis styriaca (Grunow) Hustedt
Anomoeoneis vitrea (Grunow) Ross
Aulacoseira distans (Ehrenberg) Simonsen
Caloneis alpestris (Grunow) Cleve
Caloneis silicula (Ehrenberg) Cleve
Caloneis spp.
Caloneis tenuis (Gregory) Krammer
Cavinula jaernefeltii (Hustedt) D.G.Mann & A.J. Stickle
Cavinula lapidosa (Krasske) Lange-Bert.
Cocconeis neodiminuta Krammer
Cocconeis placentula Ehrenberg
Cyclotella distinguenda Hustedt
Cyclotella glabriuscula (Grunow) Hakansson
Cyclotella spp.
Cymatopleura solea var. apiculata (W. Smith) Ralfs
Cymbella affinis Kützing
Cymbella amphicephala var. hercynica (Schmidt) Cleve
Cymbella aspera (Ehrenberg) Cleve
Cymbella cesatii (Rabenhorst) Grunow
Cymbella cistula (Ehrenberg) Kirchner
Cymbella cymbiformis Agardh
Cymbella gracilis (Ehrenberg) Kützing
Cymbella incerta (Grunow) Cleve
Cymbella naviculiformis Auerswald
Cymbella subaequalis Grunow
Cymbella subcuspidata Krammer
Cymbopleura amphicephala (Nägeli) Krammer
Delicata delicatula (Kützing) Krammer
Denticula kuetzingi Grunow
Denticula tenuis Kützing
Diadesmis contenta (Grunow) D.G.Mann
Diatoma mesodon (Ehrenberg) Kützing
Diatoma moniliformis Kützing
Diatoma vulgaris Bory
Diploneis elliptica (Kützing) Cleve
Diploneis oblongella (Nägeli) Cleve-Euler
Diploneis petersenii Hustedt
Encyonema silesiacum (Bleisch) D.G.Mann
Encyonopsis microcephala (Grunow) Krammer
Epithemia adnata (Kützing) Brébisson
Eunotia arcus Ehrenberg
Eunotia bilunaris (Ehrenberg) Mills
Eunotia exigua (Brébisson ex Kützing) Rabenhorst
Eunotia implicata Nörpel
Eunotia incisa Gregory
Label
1
2
3
4
5
1
1
1
1
3
1
1
1
1
1
6
7
1
3
1
1
1
1
1
1
Ach coa
Ach fle
Ach hun
Ach lae
Ach lan
Ach min
Ach pet
Ach spp.
Ach sub
Adl bry
Adl min
Amp pel
Amp o li
Amp ped
Ano bra
Ano sty
Ano vit
Aul dis
Cal alp
Cal sil
Cal spp.
Cal ten
Cav jae
Cav lap
Coc neo
Coc pla
Cyc dis
Cyc gla
Cyc spp.
Cym s ap
Cym aff
Cym a he
Cym asp
Cym ces
Cym cis
Cym cym
Cym gra
Cym inc
Cym nav
Cym suba
Cym subc
Cyb amp
Del del
Den kue
Den ten
Dia con
Dia mes
Dia mon
Dia vul
Dip ell
Dip obl
Dip pet
Enc sil
Enc mic
Epi adn
Eun arc
Eun bil
Eun exi
Eun imp
Eun inc
1
1
1
1
1
3
1
1
1
5
1
1
1
3
1
1
1
1
1
1
5
1
1
1
1
1
1
1
1
1
1
1
1
5
1
1
1
1
1
1
1
1
3
1
1
1
1
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
3
1
1
1
1
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
3
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
1
1
5
1
1
1
3
1
1
5
1
1
3
3
Unauthenticated
Download Date | 6/14/17 6:04 PM
1
1
1
1
3
Algal community patterns in Slovenian bogs
427
Table 3. (continued)
Sampling site
Taxa
Label
1
Eunotia meisteri Hustedt
Eunotia paludosa var. paludosa Grunow
Eunotia paludosa var. trinacria (Grunow) Nörpel
Eunotia praerupta Ehrenberg
Eunotia spp.
Eunotia tenella (Grunow) Hustedt
Fragilaria biceps (Kützing) Lange-Bert.
Fragilaria capucina Desmazifres
Fragilaria construens (Ehrenberg) Grunow
Fragilaria construens f. subsalina (Hustedt) Hustedt
Fragilaria fasciculata (C. Agardh) Lange-Bert.
Fragilaria pinnata Ehrenberg
Fragilaria tenera (W. Smith) Lange-Bert.
Fragilaria ulna (Nitzsch) Lange-Bert.
Fragilaria virescens Ralfs
Frustulia rhomboides (Ehrenberg) De Toni
Frustulia vulgaris (Thwaites) De Toni
Gomphonema acuminatum Ehrenberg
Gomphonema affine Kützing
Gomphonema angustatum (Kützing) Rabenhorst
Gomphonema angustum Agardh
Gomphonema clavatum Ehrenberg
Gomphonema gracile Ehrenberg
Gomphonema parvulum (Kützing) Kützing
Gomphonema subtile Ehrenberg
Gomphonema truncatum Ehrenberg
Gyrosigma attenuatum (Kützing) Rabenhorst
Hantzschia amphioxys (Ehrenberg) Grunow
Kobayasia subtilissima (Cleve) Lange-Bert.
Luticola mutica (Kützing) D.G.Mann
Mastogloia smithii Thwaites
Meridion circulare var. circulare (Greville) C. A. Agardh
Meridion circulare var. constrictum (Ralfs) Van Heurck
Navicula amphibola Cleve
Navicula capitatoradiata Germain
Navicula cryptocephala Kützing
Navicula cryptotenella Lange-Bert.
Navicula elginensis var. elginensis (Gregory) Ralfs
Navicula gregaria Donkin
Navicula heimansii Van Dam & Kooyman
Navicula ignota var. palustris (Hustedt) Lund
Navicula lanceolata (Agardh) Ehrenberg
Navicula nivaloides Bock
Navicula pupula var. pseudopupula (Krasske) Hustedt
Navicula pupula var. pupula Kützing
Navicula radiosa Kützing
Navicula rhynchocephala Kützing
Navicula seminulum Grunow
Navicula spp.
Navicula veneta Kützing
Neidium affine (Ehrenberg) Pfitzer
Neidium ampliatum (Ehrenberg) Krammer
Neidium bisulcatum (Lagerstedt) Cleve
Neidium iridis (Ehrenberg) Cleve
Neidium septentrionale Cleve-Euler
Nitzschia alpina Hustedt
Nitzschia amphibia Grunow
Nitzschia dissipata (Kützing) Grunow
Nitzschia frustulum (Kützing) Grunow
Nitzschia gracilis Hantzsch
Nitzschia hantzschiana Rabenhorst
Nitzschia linearis (Agardh) W. Smith
Nitzschia palea (Kützing) W. Smith
Nitzschia perminuta (Grunow) M. Peragallo
Nitzschia sinuata var. sinuata (Thwaites) Grunow
Nitzschia spp.
Pinnularia acrosphaeria Rabenhorst
Pinnularia appendiculata (Agardh) Cleve
Pinnularia borealis var. rectangularis Carlson
Eun mei
Eun p pa
Eun p tr
Eun pra
Eun spp.
Eun ten
Eun bic
Fra cap
Fra con
Fra c su
Fra fas
Fra pin
Fra ten
Fra uln
Fra vir
Fru rho
Fru vul
Gmp acu
Gmp acu
Gmp ang
Gmp ans
Gmp cla
Gmp gra
Gmp par
Gmp sub
Gmp tru
Gyr att
Han amp
Kob sub
Lut mut
Mas smi
Mer c ci
Mer c co
Nav amp
Nav cap
Nav cry
Nav crt
Nav e el
Nav gre
Nav hei
Nav i pa
Nav lan
Nav niv
Nav p ps
Nav p pu
Nav rad
Nav rhy
Nav sem
Nav spp.
Nav ven
Nei aff
Nei amp
Nei bis
Nei iri
Nei sep
Nit alp
Nit amp
Nit dis
Nit fru
Nit gra
Nit han
Nit lin
Nit pal
Nit per
Nit s sin
Nit spp.
Pin acr
Pin app
Pin b re
2
3
4
5
6
7
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
1
3
1
1
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
1
1
3
1
1
1
1
1
1
1
1
1
1
5
1
1
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
1
1
5
1
1
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
1
1
1
Unauthenticated
Download Date | 6/14/17 6:04 PM
428
A. Krivograd Klemenčič et al.
Table 3. (continued)
Sampling site
Taxa
Label
1
Pinnularia braunii (Grunow) Cleve
Pinnularia divergentissima (Grunow) Cleve
Pinnularia gibba Ehrenberg
Pinnularia gibba var. linearis Hustedt
Pinnularia intermedia (Lagerstedt) Cleve
Pinnularia interrupta W. Smith
Pinnularia maior (Kützing) Rabenhorst
Pinnularia microstauron (Ehrenberg) Cleve
Pinnularia nodosa (Ehrenberg) W.Smith
Pinnularia obcsura Krasske
Pinnularia rupestris Hantzsch
Pinnularia spp.
Pinnularia stomatophora (Grunow) Cleve
Pinnularia subcapitata Gregory
Pinnularia viridis (Nitzsch) Ehrenberg
Psammothidium oblongellum (Oestrup) Van de Vijver
Puncticulata bodanica (Grunow) Hakansson
Reimeria sinuata (Gregory) Kociolek & Stoermer
Rhopalodia gibba (Ehrenberg) O. Müller
Sellaphora stroemii (Hustedt) H.Kobayasi
Stauroneis acuta W. Smith
Stauroneis anceps Ehrenberg
Stauroneis kriegerii Patrick
Stauroneis phoenicenteron (Nitzsch) Ehrenberg
Stauroneis smithii Grunow
Surirella angusta Kützing
Surirella biseriata Brébisson
Surirella linearis var. linearis W. Smith
Tabellaria flocculosa (Roth) Kützing
CHLOROPHYTA
CHLOROPHYCEAE
Ankistrodesmus falcatus (Corda) Ralfs
Asterococcus superbus (Cienowski) Scherffel
Carteria crucifera Korschikoff
Chaetophora incrassata (Hudson) Hazen
Characium ensiforme Hermann
Chlamydomonas spp.
Chlorella spp.
Chlorella vulgaris Beijerinck
Draparnaldia plumosa (Vaucher) Agardh
Gloeocystis ampla (Kützing) Rabenhorst
Keratococcus bicaudatus (A. Braun) Boye-Petersen
Klebsormidium flaccidum (Kützing) Silva, Mattox & Blackwell
Microspora abbreviata (Rabenhorst) Lagerheim
Microspora floccosa (Vaucher) Thuret
Microspora pachyderma (Wille) Lagerheim
Microthamnion kuetzingianum Nägeli
Oedogonium spp.
Oocystis parva West & West
Oocystis solitaria Wittrock
Oocystis sp.
Palmodictyon varium (Nägeli) Lemmermann
Pandorina morum (O. F. Müller) Bory
Scenedesmus brasiliensis Bohlin
Scenedesmus ecornis (Ralfs) Chodat
Scenedesmus maximus (W. & G.S.West)
Scenedesmus ovalternus Chodat
Scenedesmus serratus (Corda) Bohlin
Scenedesmus sp.
Scenedesmus velitaris Komárek
Stigeoclonium farctum Berthold
Stigeoclonium subuligerum Kützing
Stigeoclonium tenue Kützing
Trentepohlia aurea (L.) Martius
Ulothrix aequalis Kützing
Ulothrix variabilis Kützing
Pin bra
Pin div
Pin gib
Pin g li
Pin int
Pin inr
Pin mai
Pin mic
Pin nod
Pin obc
Pin rup
Pin spp.
Pin sto
Pin sub
Pin vir
Psa obl
Pun bod
Rei sin
Rho gib
Sel str
Sta acu
Sta anc
Sta kri
Sta pho
Sta smi
Sur ang
Sur bis
Sur l li
Tab flo
2
3
1
1
3
1
1
1
1
1
3
1
1
1
1
1
1
1
4
5
6
7
1
3
1
1
1
3
1
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5
1
1
1
1
1
1
1
5
1
1
1
1
3
1
1
1
1
3
1
1
1
1
1
1
1
1
1
3
1
1
5
1
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
3
1
3
1
1
1
1
Unauthenticated
Download Date | 6/14/17 6:04 PM
1
Algal community patterns in Slovenian bogs
429
Table 3. (continued)
Sampling site
Taxa
Label
1
ZYGNEMATOPHYCEAE
Desmidiales
Actinotaenium palangula (Brébisson) Teiling
Actinotaenium sp.
Actinotaenium turgidum (Brébisson) Teiling
Closterium abruptum W. West
Closterium attenuatum Ralfs
Closterium costatum Corda ex Ralfs
Closterium dianae Ehrenberg ex Ralfs
Closterium ehrenbergii Meneghini ex Ralfs
Closterium incurvum Brébisson
Closterium intermedium Ralfs
Closterium kuetzingii Brébisson
Closterium leibleinii Kützing ex Ralfs
Closterium lineatum Ehrenberg
Closterium moniliferum (Bory) Ehrenberg ex Ralfs
Closterium navicula (Brébisson) Lütkemüller
Closterium parvulum Nägeli
Closterium ralfsii Brébisson ex Brébisson
Closterium ralfsii var. hybridum Rabenhorst
Closterium rostratum Ehrenberg ex Ralfs
Closterium spp.
Closterium striolatum Ehrenberg ex Ralfs
Cosmarium botrytis Meneghini
Cosmarium cucumis (Corda) Ralfs
Cosmarium depressum f. minuta Heimerl
Cosmarium furcatospermum W. & G.S. West
Cosmarium granatum Brébisson
Cosmarium holmiense var. integrum Lundell
Cosmarium impressulum Elfving
Cosmarium leave Rabenhorst
Cosmarium microsphinctum var. crispulum Nordstedt
Cosmarium obtusatum (Schmidle) Schmidle
Cosmarium ochthodes Nordstedt
Cosmarium pachydermum Lundell
Cosmarium perforatum Lundell
Cosmarium punctulatum Brébisson
Cosmarium pygmaeum var. heimerlii (W.&G.S.West) Krieger & Gerloff
Cosmarium quadrum Lundell
Cosmarium regnellii Wille
Cosmarium spp.
Cosmarium subgranatum (Nordstedt) Lütkemüller
Cosmarium tetraophthalmum (Kützing) Brébisson
Cosmarium vexatum var. lacustre Messikommer
Cylindrocystis brebissonii Meneghini
Desmidium swartzii (Agardh) Agardh ex Ralfs
Euastrum ansatum var. pyxidatum Delponte
Euastrum bidentatum Nägeli
Euastrum binale (Turpin) Ehrenberg
Euastrum oblongum (Greville) Ralfs
Hyalotheca dissiliens (J. E. Smith) Brébisson ex Ralfs
Hyalotheca dissiliens f. bidentula (Nordst.) Boldt
Micrasterias crux-melitensis (Ehrenberg) Hassall ex Ralfs
Micrasterias rotata (Greville) Ralfs ex Ralfs
Micrasterias thomasiana Archner
Netrium digitus (Ehrenberg) Itzigs. & Rothe
Penium polymorphum (Perty) Perty
Pleurotaenium ehrenbergii (Brébisson) de Bary
Pleurotaenium trabecula (Ehrenberg) Nägeli
Pleurotaenium trabecula var. crassum Wittrock
Spondylosium pulchellum Archner
Staurastrum alternans (Brébisson) Ralfs
Staurastrum brachiatum Ralfs
Staurastrum echinatum Brébisson ex Ralfs
Staurastrum muricatum (Brébisson) Ralfs
Staurastrum muticum (Brébisson) Ralfs
Staurastrum polymorphum Brébisson
Staurastrum punctulatum Brébisson
Act pal
Act sp.
Act tur
Clo abr
Clo att
Clo cos
Clo dia
Clo ehr
Clo inc
Clo int
Clo kue
Clo lei
Clo lin
Clo mon
Clo nav
Clo par
Clo ral
Clo r hy
Clo ros
Clo spp.
Clo str
Cos bot
Cos cuc
Cos d mi
Cos fur
Cos gra
Cos h in
Cos imp
Cos lae
Cos m-cri
Cos obt
Cos och
Cos pac
Cos per
Cos pun
Cos p he
Cos qua
Cos reg
Cos spp.
Cos sub
Cos tet
Cos v la
Cyl bre
Des swa
Eua a py
Eua bid
Eua bin
Eua obl
Hya dis
Hya d bi
Mic cme
Mic rot
Mic tho
Net dig
Pen pol
Ple ehr
Ple tra
Ple t cr
Spo pul
Sta alt
Sta bra
Sta ech
Sta mur
Sta mut
Sta pol
Sta pun
2
3
4
5
6
7
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Unauthenticated
Download Date | 6/14/17 6:04 PM
430
A. Krivograd Klemenčič et al.
Table 3. (continued)
Sampling site
Taxa
Label
1
Staurastrum sp.
Staurodesmus dejectus (Brébisson ex Ralfs) Teiling
Staurodesmus extensus var. isthmosus (Heimerl) Coes.
Staurodesmus triangularis (Lagerheim) Teiling
Teilingia granulata (Roy & Biss.) Bourrelly
Tetmemorus laevis (Kützing) ex Ralfs
Zygnematales
Mougeotia spp.
Spirogyra spp.
Zygnema spp.
CHAROPHYCEAE
Chara sp.
RHODOPHYTA
FLORIDEOPHYCEAE
Audouinella chalybea (Lyngbye) Fries
1975) and Krivograd & Vrhovšek (2003) and 17 taxa
were identified for the first time in Slovenia. Cyanobacteria were present in larger number in the bog II, the
bog of Žejna dolina, the bog at Holmec and the bog
of Mali plac. Species of the genus Anabaena Bory are
characteristic of peat moss islands (Muñoz et al. 2003),
as the fixation of atmospheric nitrogen enables them to
thrive in oligotrophic peat bogs (Basilier et al. 1978).
The species Phormidium amoenum Kützing occurred
massively in the bog II, while other common species
were Aphanothece microscopica Nägeli (the bog at
Holmec), Merismopedia hyalina (Ehrenberg) Kützing
(the bog at Holmec), Geitlerinema splendidum (Greville ex Gomont) Anagnostidis (the bog II), Gomphosphaeria aponina Kützing (the bog of Žejna dolina),
Phormidium Kützing ex Gomont (the bog of Žejna
dolina), Pseudanabaena biceps Böcher (the bog of Žejna dolina), P. catenata Lauterborn (the bog of Žejna
dolina), Tychonema bornetii (Zukal) Anagnostidis &
Komárek (the bog of Žejna dolina, the bog of Jelovica)
and Anabaena augstumnalis Schmidle ( the bog-lake
Črno jezero). The species A. microscopica, G. splendidum and P. catenata were common in peat bogs in
the Czech Republic (Nováková 2002). Pietryka (2000)
reports on the presence of the species Anabaena augstumnalis in peat bogs in Poland and Krivograd Klemenčič & Vrhovšek (2003) confirmed the presence of
the species G. aponina in the bog of Lovrenška jezera
in Slovenia.
Diatoms
Patrick (1977) wrote that in low pH waters with a
high content of humine acids, the following genera prevailed among the diatoms: Eunotia Ehrenberg, Frustulia Rabenhorst and Pinnularia Ehrenberg; the Tabellaria flocculosa (Roth) Kützing species is also common.
T. flocculosa was present in six bogs; it appeared massively in the bog-lake Črno jezero and the bog of Ledina, and individually in other bogs. In total, the Eunotia genus was represented by 11 taxa, the Frustulia genus by two and the Pinnularia genus by 18 taxa.
2
Sta sp.
Sta dej
Sta e is
Sta tri
Tei gra
Tet lae
3
4
1
1
1
3
1
1
5
6
7
1
1
5
1
3
1
3
1
1
5
5
5
1
5
1
5
5
3
1
1
The largest number of species in the Eunotia and Pinnularia genera was recorded in peat bogs with acidic
pH and low conductivity: the bog I and the bog-lake
Črno jezero. A high number of species in the Pinnularia
genus (10) were recorded also in the bog of Mali plac.
Among the identified diatom taxa, the Nitzschia gracilis
Hantzsch species, common in European bogs (Muñoz et
al. 2003), was present in the bog-lake Črno jezero and
the bog of Mali plac. The following taxa also occurred
massively: Achnanthes minutissima Kützing (the bog of
Žejna dolina and the bog of Ledina), Anomoeoneis vitrea (Grunow) Ross (the bog of Žejna dolina), Eunotia
bilunaris (Ehrenberg) Mills (the bog at Holmec), Navicula radiosa Kützing (the bog II and the bog of Ledina)
and Nitzschia hantzschiana Rabenhorst (the bog II). A.
vitrea is a species characteristic of acid bogs occurring
within the pH range from 3.6 to 6.5 (Poulíčková et al.
2001). The species Achnanthes minutissima, Eunotia
bilunaris, Gomphonema parvulum Kützing, Pinnularia
gibba Ehrenberg and P. maior (Kützing) Rabenhorst
were present in all seven bogs. The above-mentioned
species are cosmopolitan, i.e. present in bogs throughout the world (Mataloni & Tell 1996; Mataloni 1999;
Pietryka 2000; Watanabe et al. 2000; Nováková 2002;
Negro et al. 2003; Muñoz et al. 2003, Krivograd Klemenčič & Vrhovšek 2003).
Desmids
Desmids are known as ecologically highly sensitive organisms living in less productive (oligo- to mesotrophic)
waters. The most abundant desmid communities are
found in places with a relatively low content of electrolytes – low electric conductivity and alkalinity (Gligora & Plenković-Moraj 2003). The proper habitat for
desmids is acid peat bog water, where they reach
the highest diversity (Dell’Uomo & Pellegrini 1993);
desmids are common in peat bogs where peat moss
consumes the nutrients from water and thus maintains
the oligotrophic conditions necessary for their thriving (Muñoz et al. 2003). Negro et al. (2003) reported
a higher number of desmid species in acid ecosystems
Unauthenticated
Download Date | 6/14/17 6:04 PM
Algal community patterns in Slovenian bogs
431
1.0
Pho_bre Chr_lim Het_spp.
Aph_sax
Chr_qua Mic_wes
Cal_min
Glo_mag
geol
Aph_gre
Cyl_sp. Osc_ten Tyc_bor
Nos_pal Osc_pri Wor_sp.
Gom_apo Pho_for Chr_mem
Chr_obl Pse_sp. Cya_maj
Mer_pun Pse_cat Chr_pre
Osc_ang Pse_bic Coe_pus
shad
pH
Pho_spp.
Mer_hya
Chr_tur
Nos_com
Ana_sp.
Aph_mic
Aph_sta
Cal_spp.
Wor_elo
Lep_spp.
Aph_hyl
Pho_int
Cal_web
Osc_sub
Aph_par
Tol_sp.
Pho_amo Lim_red
Nos_ver Gei_spl
Ana_aug
-1.0
altitude
-0.6
1.2
Fig. 1. Results of the Canonical Corresponding Analysis (CCA) carried out in CANOCO shown as a biplot environmental variables
and Cyanobacteria data. Shad-shading, geol-bedrock. Taxa acronyms are listed in Table 3.
than in less acid ones. Within this study, the largest
number of desmids was identified in the bog-lake Črno
jezero and the bog of Ledina, with acid pH and in the
bog of Žejna dolina with basic pH. Among 75 identified desmid taxa in this study 60 taxa were found in
Slovenian bogs by Pevalek (1924), Lazar (1960, 1975)
and Krivograd & Vrhovšek (2003) and 15 taxa were
identified for the first time in Slovenia. All representatives of desmids were present only individually; the
research of other authors confirms that the desmids occurr in bogs in a large number of species, but with
low specimen representation (Dell’Uomo & Pellegrini
1993; Mataloni 1999; Krivograd Klemenčič & Vrhovšek
2003; Muñoz et al. 2003). The genera with the highest number of taxa were Cosmarium Corda ex Ralfs
(21) and Closterium Nitzsch ex Ralfs (18). In peat
bogs, desmids occur especially in small pools; however, they are less common at raised parts of bogs
(Muñoz et al. 2003). Desmid communities were reported to be reacher in bogs with open water and
moss carpets than in those with moss carpets only
(Young et al. 1986). The bog at Holmec is completely overgrown by peat moss and the number of
desmids was lower than in other peat bogs with acid
pH.
CCA ordination
The preliminary Cyanobacteria CCA analysis was carried out on the basis of eight variables, shown in Table 2. The forward selection within CCA indicated
that four environmental variables explained significant
(P < 0.05) and independent amounts of variation in the
Cyanobacteria distributions. The strongest variable was
shading, followed by bedrock, altitude and pH. Kawecka
(2003) and Novakova (2002) found out that different
light conditions affect significantly the changes in the
structure of benthic algae communities.
The eigenvalues of the first two axes of the
Cyanobacteria CCA analysis performed on the four
variables mentioned above, were 0.876 and 0.811, respectively. The first axis explained statistically significantly 10.4% and the second one 9.7% of the Cyanobacteria community variance (P = 0.002). The speciesenvironment correlation was 0.99 for axis 1 and 0.98 for
axis 2. The analysis showed that the main Cyanobacteria variation gradient depended on shading (Fig. 1),
which was strongly related to axis 1 (r = 0.97). The
first axis was in weak positive correlation with altitude
(r = 0.11) and in negative correlation with the bedrock
(r = −0.53) and pH (r = −0.06). The axis 2 was more
correlated with bedrock (r = 0.76) and altitude (r =
Unauthenticated
Download Date | 6/14/17 6:04 PM
432
−0.71) and less with shading (r = 0.18) and pH (r =
0.06).
The CCA ordination (Fig. 1) positioned the
Cyanobacteria taxa typical of low altitude, shaded
peat bogs on limestone in the upper right quadrant
(Phormidium breve (Kützing ex Gomont) Anagnostidis
& Komárek, Chroococcus limneticus Lemmermann,
Chroococcus quaternarius Zalessky, Aphanocapsa saxicola Nägeli, Calothrix minima Frémy, Gloeocapsa magma (Brébisson) Komárek & Anagnostidis, Microcystis wesenbergii (Komárek) Komárek, Heterolebleinia
(Geitler) Hoffmann), whereas the taxa more common in
high altitude, shaded peat bogs on silicate are located
in the lower right quadrant (e.g. Leptolyngbya Anagnostidis & Komárek, Aphanocapsa hyalina (Lyngbye)
Hansgirg, Phormidium interruptum Kützing, Geitlerinema splendidum, Phormidium amoenum, Tolypothrix
Kützing, Oscillatoria subbrevis Schmidle). The taxa indicative of unshaded peat bogs on limestone are positioned in in the upper left quadrant (e.g. Cylindrospermum Schmidle, Oscillatoria anguina (Bory) Gomont,
O. princeps Vaucher, O. tenuis Agardh ex Gomont, Tychonema bornetii, Nostoc paludosum Kützing, Woronichinia Elenkin, Gomphosphaeria aponina, Phormidium
formosum (Bory) Anagnostidis & Komárek, Chroococcus membraninus (Meneghini) Nägeli, C. obliteratus Richter, C. prescottii Drouet & Daily, Cyanothece major (Schröter) Komárek, Merismopedia punctata Meyen, Pseudanabaena catenata, P. biceps, Coelomoron pusillum (Van Goor) Komárek, Aphanocapsa
grevillei (Berkeley) Rabenhorst).
The preliminary diatom CCA analysis was carried out on the basis of eight variables showed in Table 2. The forward selection within CCA indicated that
four environmental variables explained significant (P
< 0.05) and independent amounts of variation in the
diatom distributions. Many authors found out that the
pH was the factor having a significant impact on the occurrence and distribution of diatom communities (Cantonati 1998; Bigler et al. 2000; Poulíčková et al. 2001).
In our case, the strongest variable was the bedrock, followed by altitude, shading and pH. Altitude influenced
significantly also the diatom composition in springs of
the southern Alps (Cantonati 1998). Conductivity (Negro et al. 2003; Soininen 2004) and water temperature
(Rott et al. 1998) influenced the diatom composition in
some studies, but in our case, these variables did not
explain significant additional variation in the diatom
data.
The eigenvalues of the first two axes of the diatom
CCA performed on the four variables mentioned above,
were 0.459 and 0.360, respectively. The first axis explained statistically significantly 11.5% and the second
axis explained 9.1% of the diatom community variance
(P = 0.002). The species-environment correlation was
0.96 for axis 1 and 0.98 for axis 2. The first axis was
in a strong positive correlation with the bedrock (r =
0.83), a weak positive correlation with pH (r = 0.37),
negative correlation with shading (r = −0.62) and altitude (r = −0.29). The axis 2 was more correlated with
A. Krivograd Klemenčič et al.
altitude (r = −0.88) and less with shading (r = 0.56),
pH (r = 0.28) and bedrock (r = 0.23).
The CCA ordination (Fig. 2) positioned the diatom taxa typical of low altitude, high pH, unshaded
peat bogs on limestone in the upper right quadrant
(e.g. Nitzschia sinuata var. sinuata (Thwaites) Grunow, Navicula lanceolata (Agardh) Ehrenberg, Sellaphora stroemii (Hustedt) H.Kobayasi, Mastogloia
smithii Thwaites, Fragilaria construens (Ehrenberg)
Grunow, F. fasciculata (C. Agardh) Lange-Bertalot,
Gomphonema subtile Ehrenberg, Puncticulata bodanica (Grunow) Hakansson, Cymbella glabriuscula (Grunow) Hakansson, Caloneis alpestris (Grunow) Cleve,
Anomoeoneis styriaca (Grunow) Hustedt, Cymbopleura
amphicephala (Nägeli) Krammer, Delicata delicatula
(Kützing) Krammer, Achnanthes lanceolata (Brébisson) Grunow, Gyrosigma attenuatum (Kützing) Rabenhorst), whereas the taxa more common in high altitude, more acid, not or partly shaded peat bogs are
located in the lower right quadrant (e.g. Cyclotella
distinguenda Hustedt, Navicula ignota var. palustris
(Hustedt) Lund, N. amphibola Cleve, N. elginensis
var. elginensis (Gregory) Ralfs, N. pupula var. pseudopupula (Krasske) Hustedt, Cymbella cistula (Ehrenberg) Kirchner, C. subcuspidata Krammer, Fragilaria
pinnata Ehrenberg, Pinnularia stomatophora (Grunow)
Cleve). The taxa indicative of shaded peat bogs are located in the upper left quadrant (e.g. Pinnularia borealis var. rectangularis Carlson, P. obcsura Krasske, P.
appendiculata (Agardh) Cleve, Achnanthes coarctata
(Brébisson) Grunow, Nitzschia frustulum (Kützing)
Grunow, Navicula seminulum Grunow, N. gregaria
Donkin, Stauroneis kriegerii Patrick, Nitzschia alpina
Hustedt, Eunotia meisteri Hustedt), and the taxa typical of high altitude peat bogs on silicate are positioned in the lower right quadrant (e.g. Eunotia paludosa var. paludosa Grunow, E. paludosa var. trinacria
(Grunow) Nörpel, Anomoeoneis brachysira (Brébisson)
Grunow, Navicula nivaloides Bock, Cavinula jaernefeltii (Hustedt) D.G.Mann & A.J. Stickle, Aulacoseira
distans (Ehrenberg) Simonsen, Neidium ampliatum
(Ehrenberg) Krammer, Frustulia rhomboides (Ehrenberg) De Toni).
The preliminary desmid CCA analysis was carried
out on the basis of eight variables shown in Table 2. The
forward selection within CCA indicated that five environmental variables explained significant (P < 0.05)
and independent amounts of variation in the desmid
distributions. The strongest variable was bedrock, followed by altitude, saturation, shading and pH. Conductivity (Negro et al. 2003) influenced the desmid composition in some studies, but in our case, this variable
did not explain significant additional variation in the
desmid data.
The eigenvalues of the first two axes of the desmid
CCA performed on the five variables mentioned above,
were 0.846 and 0.666, respectively. The first axis explained statistically significantly 10.1% and the second
one explained 7.9% of the desmid community variance
(P = 0.002). The species-environment correlation was
Unauthenticated
Download Date | 6/14/17 6:04 PM
1.0
Algal community patterns in Slovenian bogs
433
Pin_b_re Ach_coa
Nit_fru
Ach_spp.
Pin_spp. Nav_sem
Sta_kri
Ach_hun
shad
Pin_obc
Nav_gre
Nit_alp
Eun_mei
Cym_s_ap
Dia_mon
Coc_neo
Gmp_acu
Pin_int
Mer_c_co
Sur_l_li
Sur_ang
Sta_acu
Pin_app
Mer_c_ci
Pin_sub
Eun_bil
Gmp_par
Pin_vir
Gmp_cla
pH
Pin_nod
Gmp_ans
Ach_lae
Del_del
Gyr_att
Den_ten
Pin_gib
Adl_bry
Nav_spp.
Nit_lin
Pin_mai
Eun_inc
Nei_bis
Enc_sil
Eun_imp
Nit_pal Gmp_acu
Fra_vir
Eun_exi
Rei_sin
Ach_sub
Nit_han Nit_per
Fra_cap
Nit_s_si
Nav_lan Sel_str
Mas_smi Fra_fas
Gmp_sub
Fra_con
Pun_bod
Cyc_spp.
Cyc_gla Eun_bic
Cal_alp
Cyb_amp
Ano_sty
Coc_pla
Epi_adn
Ach_min
geol
Cym_suba
Eun_arc
Dip_obl
Cym_aff
Cal_ten
Amp_pel
Cym_cym
-1.0
Cym_ces
Nit_dis
Enc_mic
Dip_ell
Ach_fle
Cym_asp
Cal_sil
Nit_spp. Den_kue
Ano_vit
Pin_rup
Nav_p_pu
Psa_obl
Cym_gra
Fru_vul
Dia_vul Rho_gib
Nav_hei
Dip_pet
Nav_cap Pin_inr
Gmp_gra Eun_pra
Fra_ten
Eun_ten
Nit_gra Tab_flo
Sta_pho
Fra_uln
Amp_o_li
Dia_con
Dia_mes
Cym_nav Kob_sub Nav_rad
Amp_ped
Nit_amp
Sta_anc
Eun_spp. Nav_i_pa Nav_amp
Ach_pet
Adl_min Nav_ven Cal_spp. Cym_a_he
Nei_aff
Pin_sto
Fru_rho
Fra_pin Nav_p_ps
Nei_amp
Pin_acr Sur_bis
Cym_subc
Gmp_ang
Lut_mut
Nei_iri
Cym_inc
Eun_p_pa Ano_bra
Nav_e_el
Cyc_dis Cym_cis
Aul_dis
Nav_niv
Eun_p_tr Cav_jae
Fra_c_su Nav_crt
Cav_lap
Pin_bra
Nav_rhy
Pin_g_li
Nei_sep
Pin_div
Sta_smi
Han_amp
Pin_mic
Ach_lan
Gmp_tru
Nav_cry
altitude
-0.8
1.0
Fig. 2. Results of the Canonical Corresponding Analysis (CCA) carried out in CANOCO shown as a biplot environmental variables
and diatom data. Shad-shading, geol-bedrock. Taxa acronyms are listed in Table 3.
0.99 for axis 1 and 0.95 for axis 2. The axis 1 is strongly
correlated with bedrock (r = −0.76) and saturation (r
= 0.54) and less correlated with pH (r = −0.38), shading (r = 0.04) and altitude (r = −0.05). The axis 2 was
more correlated with saturation (r = −0.61), shading
(r = 0.58) and altitude (r = −0.51) and less correlated
with bedrock (r = 0.26) and pH (r = 0.01).
The CCA ordination (Fig. 3) positioned desmid
taxa typical of low altitude, shaded, more acid peat
bogs on silicate in the upper right quadrant (Euastrum oblongum (Greville) Ralfs, Cosmarium ochthodes Nordstedt, Pleurotaenium trabecula var. crassum
Wittrock, Actinotaenium palangula (Brébisson) Teiling, Micrasterias rotata (Greville) Ralfs ex Ralfs, Euastrum ansatum var. pyxidatum Delponte), whereas the
taxa typical of unshaded peat bogs with high saturation are located in the lower right quadrant (e.g.
Staurodesmus triangularis (Lagerheim) Teiling, Tet-
memorus laevis (Kützing) ex Ralfs, Teilingia granulata (Roy & Biss.) Bourrelly, Staurastrum brachiatum
Ralfs, Penium polymorphum (Perty) Perty, Spondylosium pulchellum Archner, Cosmarium depressum f.
minuta Heimerl, Closterium costatum Corda ex Ralfs,
C. incurvum Brébisson, Cosmarium furcatospermum
W. & G.S. West, C. pygmaeum var. heimerlii (W. &
G.S.West) Krieger & Gerloff). The taxa more common
in peat bogs with low saturation are located in the upper left quadrant (e.g. Closterium ehrenbergii Meneghini ex Ralfs, C. lineatum Ehrenberg, C. moniliferum
(Bory) Ehrenberg ex Ralfs, C. striolatum Ehrenberg ex
Ralfs, Cosmarium holmiense var. integrum Lundell, C.
cucumis (Corda) Ralfs).
We explained the distribution of algae in selected
peat bogs in Slovenia on the basis of environmental
variables. The unexplained percentage of variance could
have been reduced by including additional environmenUnauthenticated
Download Date | 6/14/17 6:04 PM
A. Krivograd Klemenčič et al.
1.0
434
Eua_obl
Clo_ehr
Cos_och
shad
Clo_lin
Ple_t_cr
Act_pal
Mic_rot
Eua_a_py
Clo_mon
geol
Cos_h_in Clo_spp. Clo_str
Sta_ech
Cos_obt
Cos_cuc
Clo_dia
Cos_punCos_m-cr
Hya_dis
Clo_att Cos_v_la Cos_pac
Cos_lae
pH
Cos_spp.
Clo_abr Clo_r_hy
Clo_nav Cos_sub
Cos_per Eua_bid
Des_swa Cos_reg
Ple_ehr Mic_cme
Cos_bot Hya_d_bi
Sta_mut
Sta_sp.
Clo_lei
Cyl_bre
Clo_ral
Act_tur
Net_dig
Sta_tri Tet_lae
Tei_gra Sta_bra
Pen_pol Spo_pul
Cos_d_mi Act_sp.
Clo_cos Clo_inc
Cos_fur Mic_tho
Cos_p_he Sta_pun
Sta_mur Sta_e_is
Sta_pol
Eua_bin
Sta_dej
Clo_par Ple_tra
Cos_qua Clo_kue
Cos_gra Clo_ros
Sta_alt
Clo_int
Cos_tet
Cos_imp
altitude
-1.0
satu
-1.0
1.0
Fig. 3. Results of the Canonical Corresponding Analysis (CCA) carried out in CANOCO shown as a biplot environmental variables
and desmid data. Shad-shading, geol-bedrock, satu-saturation. Taxa acronyms are listed in Table 3.
tal variables (nitrates, phosphates. . .) and in that case
some other environmental variables could have been the
strongest one.
Cluster analysis
We tried to separate groups in all three dendograms
(Figs. 4–6) in the most reasonable way with the help of
CCA analysis results. Four groups of samples could be
distinguished from the dendrogram based on the hierarchical cluster of the Cyanobacteria data (Fig. 4): I.
– unshaded peat bogs, II. – partly shaded peat bogs,
III. – shaded peat bogs (the bog I), IV. – sample taken
on November 2005 at the bog of Mali plac in Ljubljana Marsh (no Cyanobacteria was found in this sample). The dissimilarity between groups was higher than
0.9. The results of Cyanobacteria CCA analysis revealed that the main factor influencing the Cyanobacteria communities in the examined bogs was shading by
the surrounding vegetation.
Three groups of samples could be distinguished
from the dendrogram based on the hierarchical cluster
of the diatom data (Fig. 5): I. – peat bogs on silicate,
II. – the bog-lake Črno jezero and the bog of Mali plac
(these two sampling sites differ from others in bigger
depth of water column), III. – peat bogs on limestone.
The dissimilarity between groups was higher than 0.7.
The results of diatom CCA analysis also indicated that
the bedrock is the main factor influencing the diatom
communities in the studied peat bogs.
Five groups of samples could be distinguished from
the dendrogram based on the hierarchical cluster of the
desmid data (Fig. 6): I. – peat bogs on silicate and limestone, II. – peat bogs on silicate, III. – samples taken in
April and November at the bog I, IV. – samples taken in
August and November at the bog of Mali plac in Ljubljana Marsh, V. – sample taken in January at the bog of
Mali plac in Ljubljana Marsh (there were no desmids
found in this sample). The dissimilarity between groups
was higher than 0.9. It is evident from the dendrogram
(Fig. 6) that temporal changes in the desmids commuUnauthenticated
Download Date | 6/14/17 6:04 PM
Algal community patterns in Slovenian bogs
1
0,9
0,8
0,7
435
0,6
0,5
0,4
0,3
0,2
0,1
0
4.maj.05
4.jun.06
4.avg.05
4.nov.05
7.sep.05
7.jun.06
7.nov.05
7.jun.05
3.maj.05
3.nov.05
3.avg.05
3.maj.06
5.maj.05
5.okt.05
5.jul.05
5.mar.06
2.maj.05
2.avg.05
2.maj.06
6.jan.05
6.maj.05
6.avg.05
1.apr.05
1.avg.05
1.nov.05
1.maj.06
6.nov.05
I.
II.
III.
IV.
V.
Fig. 4. Dendrogram of the investigated localities on the basis of the Cyanobacteria data.
1
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
1.nov.05
1.maj.06
1.apr.05
1.avg.05
2.maj.05
2.avg.05
2.maj.06
5.maj.05
5.okt.05
5.jul.05
5.mar.06
6.avg.05
6.nov.05
6.jan.05
6.maj.05
3.maj.05
3.avg.05
3.nov.05
3.maj.06
4.maj.05
4.jun.06
4.avg.05
4.nov.05
7.nov.05
7.jun.06
7.sep.05
7.jun.05
I.
II.
III.
Fig. 5. Dendrogram of the investigated localities on the basis of the diatom data.
1
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
7.jun.05
7.jun.06
7.sep.05
7.nov.05
6.maj.05
2.avg.05
2.maj.05
4.avg.05
4.nov.05
4.maj.05
5.jul.05
5.mar.06
1.avg.05
1.maj.06
4.jun.06
2.maj.06
3.avg.05
3.maj.06
3.nov.05
3.maj.05
5.maj.05
5.okt.05
1.apr.05
1.nov.05
6.avg.05
6.nov.05
6.jan.05
I.
II.
III.
IV.
V.
Fig. 6. Dendrogram of the investigated localities on the basis of the desmid data.
nity composition are larger than the spatial ones, which
may indicate that the seasons are one of the key factors
influencing the presence and distribution of desmids in
peat bogs. The same could not be said of Cyanobacteria and diatoms, as the dendrograms (Figs 4, 5) clearly
show that spatial changes in the Cyanobacteria commuUnauthenticated
Download Date | 6/14/17 6:04 PM
436
nity composition are greater than the temporal ones.
However, further investigation is recomended to study
the factors that shape the desmid community structure.
References
Basilier K., Granhall U. & Stenstrom T. 1978. Nitrogen fixation
in wet minerotrophic moss communities of a subartic mire.
Oikos 31: 236–246.
Bigler C., Hall R.I. & Renberg I. 2000. A diatom-training set
for palaeoclimatic inferences from lakes in northern Sweden.
Verh., Internat. Verein. Limnol. 27: 1–9.
Borics G., Tóthmérész B., Grigorszky I., Padisák J., Várbíró G.
& Szabo S. 2003. Algal assemblage types of bog-lakes in Hungary and their relation to water chemistry, hydrological conditions and habitat diversity. Hydrobiologia 502: 145–155.
Cambra J., Hindák F. 1998. Green algae from mountain peat-bog
in the Eastern Pyrenees (Catalonia, Spain). Biologia 53/4:
467–480.
Cantonati M. 1998. Diatom communities of springs in the southern alps. Diatom research 13, 2: 201–220.
Dell’Uomo A. & Pellegrini E. 1993. Desmids from a peat-bog in
the northern Apennines (Italy). Algological Studies 68: 27–
38.
Dell’Uomo A., Pellegrini E. & Prader K. 1992. Le Desmidiaceae
del Palů di Sotto nella Piana di Marcesina (Altopiano di Asiago, Prealpi vicentine). Archivio Botanico Italiano 68, 3/4:
181–194.
Ettl H. 1978. Xanthophyceae. In: Ettl H., Gerloff J. & Heynig
H. (eds), Süßwasserflora von Mitteleuropa. Band 3. Gustav
Fischer Verlag, Stuttgart, New York, 530 pp.
Ettl H. 1983. Chlorophyta I. Phytomonadina. In: Ettl H., Gerloff
J., Heynig H. & Mollenhauer D. (eds), Süßwasserflora von
Mitteleuropa. Band 9. Gustav Fischer Verlag, Jena, 806 pp.
Gligora M. & Plenković-Moraj A. 2003. Contribution of desmids
to phytoplankton assemblies in two Croatian karstic lakes.
Biologia 58: 701–708.
Graham J.M., Kent A.D., Lauster G.H., Yannarell A.C., Graham
L.E. & Triplett E.W. 2004. Seasonal dynamics of phytoplankton and planktonic protozoan communities in a northern temperate humic lake: diversity in a dinoflagellate dominated system. Microbial ecology 48: 528–540.
Hindák F. 1996. Kľúč na určovanie nerozkonarených vlaknitých
zelených rias (Ulotrichineae,
Ulotrichales, Chlorophyceae). Slovenská botanická spoločnost pri
SAV, Bratislava, 73 pp.
Hindák F. 2006. Zelené kokálne riasy (Chlorococcales, Chlorophyceae). Slovenská vodohospodárska spoločnosť ZSVTS pri
VÚVH, Bratislava.
Hindák F., Marvan P., Komárek J., Rosa K., Popovský J. &
Lhotský O. 1978. Sladkovodné riasy. Slovenské pedagogické
nakladatelstvo, Bratislava, 724 pp.
Hortobágyi T. 1973. The microflora in the settling and subsoil water enriching basins of the Budapest waterworks. A comparative study in ecology, limnology and systematics. Akadémiai
Kiadó, Budapest, 610 pp.
Kawecka B. 2003. Effect of different light conditions on Cyanobacteria and algal communities in Tatra Mts Stream (Poland).
Oceanological and Hydrobiological Studies XXXII, 2: 3–13.
Komárek J. & Anagnostidis K. 1998. Cyanoprokaryota. Chroococcales. In: Ettl H., Gärtner G., Heynig H. & Mollenhauer
D. (eds), Süßwasserflora von Mitteleuropa. Band 19/1. Spektrum Akademischer Verlag, Heidelberg, Berlin, 548 pp.
Komárek J. & Anagnostidis K. 2005. Cyanoprokaryota. Oscillatoriales. In: Büdel B., Krienitz L., Gärtner G. & Schagerl M.
(eds), Süßwasserflora von Mitteleuropa. Band 19/1. Elsevier
Spektrum Akademischer Verlag, München, 759 pp.
Krammer K. & Lange-Bertalot H. 1997a. Bacillariophyceae. Naviculaceae. In: Ettl H., Gerloff J., Heynig H. & Mollenhauer
D. (eds), Süßwasserflora von Mitteleuropa. Band 2/1. Gustav
Fischer Verlag, Stuttgart, 876 pp.
Krammer K. & Lange-Bertalot H. 1997b. Bacillariophyceae.
Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H.,
A. Krivograd Klemenčič et al.
Gerloff J., Heynig H. & Mollenhauer D. (eds), Süßwasserflora
von Mitteleuropa. Band 2/2. Gustav Fischer Verlag, Stuttgart,
596 pp.
Krammer K. & Lange-Bertalot H. 2004a. Bacillariophyceae. Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H., Gerloff J.,
Heynig H., Mollenhauer D. (eds.) Süßwasserflora von Mitteleuropa. Band 2/3. Gustav Fischer Verlag, Stuttgart, 576
pp.
Krammer K. & Lange-Bertalot H. 2004b. Bacillariophyceae.
Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis Teil 1–
4. In: Ettl H., Gärtner G., Gerloff J., Heynig H. & Mollenhauer D. (eds), Süßwasserflora von Mitteleuropa. Band 2/4.
Gustav Fischer Verlag, Stuttgart, 437 pp.
Krammer K. 2000. The genus Pinnularia. In: Lange-Bertalot
(ed.), Diatoms of Europe. Vol. 1. Ruggell, A.R.G. Gantner
Verlag K.G., 703 pp.
Krivograd Klemenčič A. & Vrhovšek D. 2003. Algae in the peat
bogs Lovrenška jezera and Šijec in Slovenia. Natura Croatica
12, 3: 141–150.
Lazar J. 1960. Alge Slovenije. Seznam sladkovodnih vrst in ključ
za določanje. SAZU, Ljubljana, 279 pp.
Lazar J. 1975. Razširjenost sladkovodnih alg v Sloveniji. SAZU,
Ljubljana, 83 pp.
Lederer F. 1999. Algal flora of peat bog Červené blato (Třeboň
Basin, Czech Republic). Preslia 70: 303–311.
Lenzenweger R. 1996. Desmidiaceenflora von Österreich. In: Kies
L. & Schnetter R. (eds), Bibliotheca phycologica. Band 101.
J. Cramer, Berlin-Stuttgart, 162 pp.
Lenzenweger R. 1997. Desmidiaceenflora von Österreich. In: Kies
L. & Schnetter R. (eds), Bibliotheca phycologica. Band 102.
J. Cramer, Berlin-Stuttgart, 216 pp.
Lenzenweger R. 1999. Desmidiaceenflora von Österreich. In: Kies
L. & Schnetter R. (eds), Bibliotheca phycologica. Band 104.
J. Cramer, Berlin-Stuttgart, 218 pp.
Lenzenweger R. 2003. Desmidiaceenflora von Österreich. In: Kies
L. & Schnetter R. (eds). Bibliotheca phycologica. Band 111.
J. Cramer, Berlin-Stuttgart, 87 pp.
Mataloni G. & Tell G. 1996. Comparative analysis of the phytoplankton communities of a peat bog from Tierra del Fuego
(Argentina). Hydrobiologia 325: 101–112.
Mataloni G. 1999. Ecological studies on algal communities from
Tierra del Fuego peat bogs. Hydrobiologia 391: 157–171.
Muñoz J., Aldasoro J.J., Negro A., de Hoyos C. & Vega J.C.
2003. Flora and water chemistry in a relictic mire complex:
the Sierra Segundera mire area (Zamora, NW Spain). Hydrobiologia 495: 1–16.
Mulec J., Mihevc A., Pipan T. 2005. Intermittent lakes in the
Pivka basin. Acta Carsologica 34/4, 1: 543–565.
Negro A.I., de Hoyos C. & Aldasoro J.J. 2003. Diatom and desmid
relationships with the environment in mountain lakes and
mires of NW Spain. Hydrobiologia 505: 1–13.
Neustupa J. Nováková S., Sejnohová L., Skaloud P. & Řezáčová
M. 2002. Algae from aquatic, peat bog and aerial biotopes
in the catchment area of the River Křemelná in Šumava National Park. Czech Phycology, Olomouc 2: 47–61.
Nováková S. 2002. Algal flora of subalpine peat bog pools in the
Krkonoše Mts. Preslia 74: 45–56.
Pantle R. & Buck H. 1955. Die biologische der Überwachung der
Gewässer und die Darstellung der Ergebnise. Gas-u. Wasserfach 96: 604.
Poulíčková A., Hájek M. & Rybníček K. (eds.) 2005. Ecology and
palaeoecology of spring fens of the West Carpathians. Palacký
University, Olomouc, 209 pp.
Patrick R. 1977. Ecology of freshwater diatoms and diatom communities, pp. 284–322. In: Werner D. (ed.), The biology of
diatoms. Blackwell, Oxford.
Pevalek I. 1924. Geobotanička i algološka istraživanja cretova u
Hrvatskoj i Sloveniji. Rad Jugoslavenske akademije znanosti
i umjetnosti. Knjiga 230: 29–117.
Pietryka M. 2000. Biodiversity of phycoflora of the peat bogs in
the Izerskie Mountains. Opera Corcontica 37: 351–358.
Popovsky J. & Pfiester L.A. 1990. Dinophyceae. In: Ettl H.,
Gerloff J., Heynig H. & Mollenhauer D. (eds), Süßwasserflora
Unauthenticated
Download Date | 6/14/17 6:04 PM
Algal community patterns in Slovenian bogs
von Mitteleuropa. Band 6. Gustav Fischer Verlag, Stuttgart,
272 pp.
Poulíčková A., Bogdanová K., Hekera P. & Hájková P. 2001. Diatom flora of the springs on the borderline between Moravia
and Slovakia I. Northeastern part of the territory. Czech Phycology, Olomouc 1: 63–68.
Rauch A., Fesl C. & Schagerl M. 2006. Influence of environmental variables on algal associations from a floating vegetation
mat (Schwingmoor Lake Lunzer Obersee, Austria). Aquatic
Botany 84: 129–136.
Rieth A. 1980. Xanthophyceae. In: Ettl H., Gerloff J., Heynig
H. (eds), Süßwasserflora von Mitteleuropa. Band 4. Gustav
Fischer Verlag, Stuttgart, New York, 147 pp.
Rott E., Duthie H.C. & Pipp E. 1998. Monitoring organic pollution and eutrophication in the Grand River, Ontario, by
means of diatoms. Can. J. Fisher. Aquatic Sci. 55: 1443–
1453.
Schaumburg J., Schmedtje U., Schranz C., Köpf B., Schneider S.,
Meilinger P., Hofmann G., Gutowski A. & Foerster J. 2004.
Instruction Protocol for the Ecological Assessment of Running Waters for Implementation of the EU Water Framework
Directive: Macrophytes and Phytobenthos. Bavarian Water
Management Agency, München, 89 pp.
Soininen J. 2004. Benthic diatom community structure in boreal
streams. Distribution patterns along environmental and spatial gradients. Academic dissertation in limnology. University
of Helsinki, Department of Biological and Environmental Sciences, Helsinki, 46 pp.
Soukupová L., Husáková J., Lederer F. & Váňa J. 2001. Effect
of limestone-paved track on the Rokytecká Mire, Bohemian
Forest. Silva Gabreta 6: 124–125.
Starmach K. 1966. Cyanobacteria – Sinice, Glauciphyta –
Glaukofity. In: Starmach K. (ed.), Flora s
lodkovodna polski.
Panstwowe Wydawnictwo Naukowe, Warszawa, 808 pp.
Starmach K. 1968. Xanthophyceae – Roznowiciowe. In: Starmach
K. (ed.), Flora s
lodkovodna polski. Pañstwowe Wydawnictwo
Naukowe, Warszawa, 393 pp.
437
Starmach K. 1972. Chlorophyta III. Zielenice Nitkovate: Ulotrichales, Ulvales, Prasiolales, Sphaeropleales, Cladophorales,
Chaetophorales, Trentepohliales, Siphonales, Dichotomosiphonales. In: Starmach K. (ed.), Flora s
lodkovodna polski.
Państwowe Wydawnictwo Naukowe, Warszawa, 750 pp.
Starmach K. 1974. Cryptophyceae, Dinophyceae, Raphidophyceae. In: Starmach K. (ed.), Flora s
lodkovodna polski.
Pañstwowe Wydawnictwo Naukowe, Warszawa, 517 pp.
Starmach K. 1977. Phaeophyta-Brunatnice, Rhodophyta – Krasnorosty. In: Starmach K. (ed.), Flora s
lodkovodna polski.
Pañstwowe Wydawnictwo Naukowe, Warszawa, 443 pp.
Starmach K. 1980. Chrysophyceae – Zlotowiciowce (oraz zooflagellata wolnozyjace). In: Starmach K. (ed.), Flora s
lodkovodna
polski. Państwowe Wydawnictwo Naukowe, Warszawa, 774
pp.
Starmach K. 1983. Euglenophyta – Eugleniny. In: Starmach K.
(ed.), Flora s
lodkovodna polski. Państwowe Wydawnictwo
Naukowe, Warszawa, 593 pp.
Succow M. & Joosten H. (eds.) 2001. Landschaftsökologische
Moorkunde. E. Schweizerbartsche Verlagsbuchhandlung,
Stuttgart, 622 pp.
ter Braak C.J.F. & Šmilauer P. 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for
Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca NY, USA, 500 pp.
Watanabe M.M., Mayama S., Hiroki M. & Nozaki H. 2000.
Biomass, species composition and diversity of epipelic algae
in mire pools. Hydrobiologia 421: 91–102.
Wo
lowski K. & Hindák F. 2005. Atlas of Euglenophytes.
VEDA, Publishing house of the Slovak Academy of Sciences,
Bratislava, 136 pp.
Young Y.K., Stokes P. & Gorham E. 1986. Algae of selected continental and maritime bogs in North America. Can. J. Bot.
64: 1825–1833.
Received August 18, 2008
Accepted June 11, 2009
Unauthenticated
Download Date | 6/14/17 6:04 PM