7-7 Divide a Polynomial by a Monomial Name Date Divide: (15y3 ⫹ 20y2 ⫺ 30y) ⫼ 5y 15y3 20y2 15y3 ⫹ 20y2 ⫺ 30y ⫺30y ⫽ ⫹ ⫹ 5y 5y 5y 5y ( ) ( ) ( ) Divide each term of the polynomial by the monomial divisor. ⫽ (3y31) ⫹ (4y21) ⫹ (⫺6y11) ⫽ 3y2 ⫹ 4y ⫺ 6 Divide the coefficients; apply the Law of Exponents for Division to divide the variables. Simplify. So (15y3 ⫹ 20y2 ⫺ 30y) ⫼ 5y ⫽ 3y2 ⫹ 4y ⫺ 6. y⫺2 Simplify: ⫺3 z 2 ( ) y⫺2 z⫺3 ( ) 2 ⫽ y⫺2(2) z⫺3(2) Use the Law of Exponents for a Power of a Quotient. 3(2) ⫽ z2(2) y Use the Law of Exponents for a Negative Power. 6 ⫽ z4 y Simplify by raising a power to a power. Divide and check. Check students’ work. 1. 12v7 ⫼ (⫺6v5) 12 v7 (6)(v ) 5 2. 40b9 ⫼ (⫺5b3) 9 2v7 5 ? 40 b (5 )( b ) 2v2 Copyright © by William H. Sadlier, Inc. All rights reserved. 3 6 60 g h 4 gh4 ( )( 2 4 (63)( xxyy ) 3 8b9 3 12v7 (6v5)(2v2) 12v7 12v7 True 4. 60g3h6 ⫼ 4gh4 3. 6x2y4 ⫼ 3xy2 2 8b6 2xy2 5. ⫺126a11bc2 ⫼ 14ab4c6 a bc (126 14 )( ab c ) 11 ) 4 6 9a10 15g2h2 7. (15x3 ⫹ 25x2 ⫺ 2x) ⫼ (⫺5x) 3x2 5x 2 5 2 b3c4 8. (28y3 ⫹ 12y2 ⫺ 5y) ⫼ (⫺4y) 7y2 3y 5 4 10. (12m6n4 ⫺ 30m5n7 ⫺ 42m4n6) ⫼ (⫺6m4n6) 6. –236pq4r11 ⫼ 59p3q7r9 4 11 pq r (236 59 )( p q r ) 3 7 9 4r2 p2q3 9. (4x4 ⫺ 12x3y2 ⫺ 10x2y) ⫼ (⫺2x2y) 2x2 6xy 5 y 11. (52r7s5t4 ⫺ 91r9s7t2 ⫹ 78r8s7t3) ⫼ (⫺13r8s6t3) 4t 7rs 6s t rs 2m2 5mn 7 n2 Lesson 7-7, pages 190–191. Chapter 7 181 For More Practice Go To: Simplify. 5 13. v11 w x3 4 x 3(4) 2(4) y 0 16. 4w 6 v x12 y8 0 17. ⫺2a b3 ( 4313 v18 64v18 (⫺4m4n2)2(2mn)3 ⫺20m5n10 21. (16m8n4)(8m3n3) 20m5n10 20m5n10 24. ; 32m6 5n3 (3x2y2)2(⫺xy3)4 (7x3y2)3 (x3y2)3 (32x4y4)(x4y12) (73x9y 6)(x9y6) 73y 8 343y8 ; 32 9 b12 15x12y4 144x10y18 48y14 ; 15x12y4 5x2 22. 5 19. ⫺36v8 ⫺6t 3 ( (2b ) a 3 3 2 9 23. 0.16c6d24 (2r2s2)3(⫺rs7)2 ⫺(9r2s3)2(r4s)2 (23r6s6)(r2s14) (92r4s6)(r8s2) (23r4s8) 81s4 ; 2 4 4 (9 r s ) 8 ; 5 (⫺3.2x8y6)2(x3y4)3 (1.6x14y10)2 2.56x28y20 10.24x25y24 4y4 ; 2.56x28y20 x3 144c26 d2 26. 8 4 (6tv ) (10.24x16y12)(x9y12) (16c24d20)(1.44c8d2) 0.16c6d24 4 ) 32 1296t 20 v (2c6d5)4(1.2c4d)2 (⫺0.4c3d12)2 23.04c32d22 d5(13) e8(13) 65 d104 e 8b a6 16b12 (16x8y16)(9x2y2) ) (2)414 (2x2y4)4(⫺3xy)2 ⫺15x12y4 25. b3(2) c5(2) 6 b10 c ( 13 ( ) 2 18. ⫺14a 7b3 4 ) 128m11n7 v5(12) w11(12) 60 v132 w 3 5 15. d8 e 2 ( ) ( ) 20. 3 14. b5 c 12 ( ) 12. (y2) (⫺3p4q2)2(p2q)3 (4p8q3)2(⫺p4q5)3 (32)p8q4p6q3 (4)2p16q6(p12q15) 16p2q1 16p2q8 ; 9p4q9 9 27. The area of a rectangle with width 3x is given by the expression 12x2 ⫺ 15x. Write a polynomial expression for the length of the rectangle. Divide: (12x2 15x) 3x; 12x2 3x 15x 3x; 4x 5; The length of the rectangle can be represented by the binomial 4x 5. 28. The area of a triangle with height 4x is given by the expression 16x2 ⫺ 4x. Write a polynomial expression for the base of the triangle. 1 A bh, and h 4x and A 16x2 4x; 2 1 Substitute: 16x2 4x b(4x); Solve for b: 2 16x2 4x 2x(b); b (16x2 4x) 2x; b 8x 2; The base of the triangle can be represented by the binomial 8x 2. Compute mentally. 29. (24)(30) (20 4)30 20 • 30 4 • 30 600 120 720 182 Chapter 7 30. (15)(9)(2) (15)(2)(9) (30)(9) 270 2 1 1 1 31. 5 3 ⫹ 7 8 ⫹ 11 3 ⫺ 4 8 1 1 1 2 5 11 7 4 3 8 8 3 17 3 20 Copyright © by William H. Sadlier, Inc. All rights reserved. Solve.
© Copyright 2026 Paperzz