Lifting Line Theory • • • Applies to large aspect ratio unswept wings at small angle of attack. Developed by Prandtl and Lanchester during the early 20th century. Relevance – Analytic results for simple wings – Basis of much of modern wing theory (e.g. helicopter rotor aerodynamic analysis, extends to vortex lattice method,) – Basis of much of the qualitative understanding of induced drag and aspect ratio Thin-airfoil theory Cl=2π(α-αo) Biot Savart Law: Velocity produced by a semi-infinite segment of a vortex filament h Γ V= Γ 4πh 1868-1946 1875-1953 Physics of an Unswept Wing l, Γ Lift varies across span -s s y Circulation is shed (Helmholz thm) pu<pl pu≈ pl Vortical wake Vortical wake induces downwash on wing… Downwash …changing angle of attack just enough to produce variation of lift across span Simplest Possible Model Wake model b Section model A A Induced drag di Section A-A LLT – The Section Model di ε l V∞ ε w α LLT – The Wake Model Γ -s y1 y s dy1 The Monoplane Equation l, Γ Wake model dΓ s w( y ) = dy y1 dy1 ∫ 4π ( y − y ) −s Section model 1 s c = Γ π V∞ (α − α 0 )c − ∫ 4 −s dΓ dy y1 dy1 y − y1 π θ y / s = − cos θ = Γ π V∞ (α − α 0 )c − π wc πc s y -s 0 Substitute for θ, and express Γ as a sine series in θ Γ = 4U ∞ s πcn (α − α 0 ) sin θ = ∑ An sin( nθ ) + sin θ 4s 4s n =1, odd ∞ ∑ A sin(nθ ) n =1, odd n ∞ The Monoplane Eqn. Substituting Γ = 4U ∞ s Results ∞ ∑ A sin(nθ ) n =1, odd s n into s 2 CL = Γdy V∞ S −∫s 2 C Di = 2 ∫ wΓdy V∞ S − s s w( y ) = dΓ gives C L = ARπA1 C Di = C (1 + δ ) πAR w = V∞ dy1 ∫ 4π ( y − y ) −s ∞ 2 L dy y1 ∑ n =1, odd 1 nAn sin(nθ ) sin θ δ= ∞ ∑ n( A n =3, odd πc 4s (α − α 0 ) sin θ = πcn sin( θ ) sin θ + A n ∑ n 4 s n =1, odd ∞ n / A1 ) 2 Solution of monoplane equation πc πcn (α − α 0 ) sin θ = ∑ An sin( nθ ) + sin θ 4s 4s n =1, odd ∞ s y -s 0 π θ y / s = − cos θ s=2.8; alpha=5*pi/180; alpha0=-5.4*pi/180; N=20; th=[1:N]'/N*pi/2; y=-cos(th)*s; c=ones(size(th)); n=1:2:2*N-1; %Half span (distances normalized on root chord) %5 degrees angle of attack %Zero lift AoA=-5.4 deg. for Clark Y %N=20 points across half span %Column vector of theta's %Spanwise position %Rectangular wing, so c = c_r everywhere %Row vector of odd indices llt.m res=pi*c/4/s.*(alpha-alpha0).*sin(th); %N by 1 result vector coef=sin(th*n).*(pi*c*n/4/s+repmat(sin(th),1,N)); %N by N coefficient matrix ∞ a=coef\res; %N by 1 solution vector Γ = 4U ∞ s gamma=4*sin(th*n)*a; %Normalized on uinf and s w=(sin(th*n)*(a.*n'))./sin(th); AR=2*s/mean(c); CL = CL=AR*pi*a(1); CDi=CL^2/pi/AR*(1+n(2:end)*(a(2:end).^2/a(1).^2)); πc 4s (α − α 0 ) sin θ = ARπA1 πcn sin( ) sin θ θ + A n ∑ n 4 s n =1, odd ∞ ∑ A sin(nθ ) n =1, odd n C L2 C Di = (1 + δ ) πAR Example 0.1 y/c Our AR=5.6 Rectangular Clark Y Wing 0 0 CL=0.80783, CDi=0.038738 0.2 Γ/V∞s 0.15 0.1 0.05 0 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 -0.9 -0.8 -0.7 -0.6 -0.5 y/s -0.4 -0.3 -0.2 -0.1 0 0 -w/V ∞ -0.05 -0.1 -0.15 -0.2 -1 Determine aerodynamic characteristics of our rectangular Clark Y wing αo≈-5.4o 0.05 0.1 0.2 0.3 0.4 0.5 x/c 0.6 0.7 0.8 0.9 1 Drag Polar C L2 CD = πAR Curve for minimum drag (elliptical wing) C D = C L (tan α − α 0lift ) Curve assuming wing only generates force normal to chord Note that friction drag coefficient of 0.01 added to CDi The Elliptic Wing The minimum drag occurs for a wing for which An=0 for n≥3. For this wing: (cos θ = − y / s ) 1. Γ = 4U ∞ s ∞ n =1, odd ∞ 2. w = V∞ ∑ ∑ A sin(nθ ) n =1, odd n nAn sin(nθ ) sin θ 3. = Γ π V∞ (α − α 0 )c − π wc Further results C L = ARπA1 C L2 C Di = πAR w = A1 V∞ Spitfire Note that the chordlengths are all lined up along the quarter chord line so the actual wing shape is not an ellipse Not done yet… 2πAR(α − α 0 ) CL = AR + 2 C L2 C Di = πAR Geometrically Similar Wings These results work quite well even for non-elliptical wings: C 1 1 α A − α B = L − π ARA ARB Prandtl’s Classic Rectangular Wing Data for Different Aspect Ratios C DiA − C DiB 1 C L2 1 = − π ARA ARB Prandtl’s rescaling using LLT result to AR=5
© Copyright 2026 Paperzz