expected value of g (X , Y ) P P E (g (X , Y )) = x y g (x, y )p(x, y ) if X and Y are discrete. RR or E (g (X , Y )) = g (x, y )f (x, y )dxdy if X and Y are continuous. Theorem: Let X and Y be two r.v.s and a and b are constants, then E (aX + bY ) = aE (X ) + bE (Y ) provided E (X ) and E (Y ) are finite. Corollary: Let W1 , W2 , · · · , Wn be any r.v.s for which E (Wi ) < ∞, i = 1, · · · , n and let a1 , a2 , · · · , an be constants. Then E (a1 W1 + a2 W2 + · · · + an Wn ) = a1 E (W1 ) + a2 E (W2 ) + · · · + an E (Wn ). Example 3.9.4. A secretary put n letters into n envelops handed to her at random. How many people, on average, will receive their correct mail? Let Xi be the number of correct mails put into the ith envelope. Then P(Xi = 1) = n1 , P(Xi = 0) = 1 − n1 and E (Xi ) = n1 . Let the P number of envelopes correctly stuffed be X , then X = ni=1 XP i. So E (X ) = ni=1 E (Xi ) = 1. E (XY ) P P E (XY ) = x y xyp(x, y ) if X and Y are discrete. RR or E (g (X , Y )) = xyf (x, y )dxdy if X and Y are continuous. Theorem: If X and are independent,PE (XY PY P P ) = E (X )E (Y ). proof: E (XY ) = xyp(x, y ) = x y x y xypX (x)PY (y ) = P P xp(x) yp(y ) = E (X )E (Y ). x y Exercise 3.9.1. suppose r chips are drawn with replacement from an urn containing n chips numbered 1 to n. Let V be the sum of the numbers drawn. Find E (V ). 3.9.3. Suppose that fX ,Y (x, y ) = 32 (x + 2y ), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Find E (X + Y ). Variance of a sum of r.v.s definition of covariance: Cov (X , Y ) = E [(X − µX )(Y − µY )] = E (XY ) − µX µY . example Given the joint pdf 24xy , 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x + y ≤ 1 f (x, y ) = 0, otherwise R∞ R 1−x fX (x) = −∞ f (x, y )dy = 0 24xydy = 12x(1 − x 2 ), 0 ≤ x ≤ 1. Similarly, fY (y ) = 12y (1 − y 2 ), 0 ≤ y ≤ 1, and µX = µY = 52 . Z 1 Z 1−x E (XY ) = Z xy 24xydydx = 8 0 0 Thus Cov (X , Y ) = 0 2 15 2 − ( 25 )( 52 ) = − 75 . 1 x 2 (1 − x)3 dx = 2 . 15 Theorem: Suppose X and Y are r.v.s with finite variances, and a and b are constants. Then Var (aX + bY ) = a2 Var (X ) + b 2 Var (Y ) + 2abCov (X , Y ). Proof: Page 190. Example Example 3.9.8. For the joint pdf fX ,Y (x, y ) = x + y , 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Find Var (X + Y ). Note Var (X + Y ) = Var (X ) + Var (Y ) + 2Cov (X , Y ). R1 fX (x) = 0 (x + y )dy = x + 12 , 0 ≤ x ≤ 1. R1 7 µX = E (X ) = 0 x(x + 12 )dx = 12 . R 1 1 5 2 2 E (X ) = 0 x (x + 2 )dx = 12 and 11 Var (X ) = E (X 2 ) − µ2X = 144 . R1R1 Next E (XY ) = 0 0 xy (x + y )dxdy = 13 , so Cov (X , Y ) = E (XY ) − µX µY = −1/144. Finally, Var (X + Y ) = 2 ∗ 11/144 − 2 ∗ 1/144 = 5/36. variance of a sum of r.v.s W1 , ·P · · , Wn are r.v.s finite variances, Pwith Pthen n n 2 Var ( i=1 ai Wi ) = i=1 ai Var (Wi ) + 2 i<j ai aj Cov (Wi , Wj ). If W1P , · · · , Wn are independent, then P Var ( ni=1 ai Wi ) = ni=1 ai2 Var (Wi ). In particular, Var (W1 + W2 + · · · + Wn ) = Var (W1 ) + Var (W2 ) + · · · + Var (Wn ). Example 3.9.11. Let X̄n be the mean of a random sample of n observations X1 , · · · , Xn with E (Xi ) = µ, Var (Xi ) = σ 2 . Then X̄n = n1 X1 + · · · + n1 Xn , 2 and Var (X̄n ) = ( n1 )2 Var (X1 ) + · · · + ( n1 )2 Var (Xn ) = σn . Exercises 3.9. 20. Let X ∼ binomial (n, pX ), Y ∼ binomial (m, pY ). Assume X and Y are independent. Find E (W ), Var (W ) where W = 4X + 6Y . 3.9.16. Let X and Y be r.v.s with f (x, y ) = 1, −y ≤ x ≤ y , 0 ≤ y ≤ 1. Show that Cov (X , Y ) = 0 but X and Y are not independent.
© Copyright 2026 Paperzz