C H A PT E R I 1 . 1 N O IS E 1.1.1 STO R M longer i n the O radio noise by constitute many techniques such sources physics ment of and solar to the subsequent noise storm Hey in 19^2 at was so intense that were noise lasts extends advent of and from of noise (Wild et been at decay of al., O I radar jammed. from storms storms decameter of the plasma have been was telescopes, from their activity. this It established radio type is also have in its receivers, the III in confirmed. i n the to the develop by radiation the that wavelengths. appeared 1965; and bursts of Historically, operating ’d a y s ' of inter* accidentally Sometimes now obser* time birth, discovered of Models receivers is extensively radio understanding their processes variety constructed and most using polarimeters. decameter Kundu, one complex sources; comprising 1963; the 'hours’ to to meter, perhaps wavelength. wavelength noise at better of satellite-borne kilometer reviews and storm decimeter storms I simple radiation meter wavelengths storm have arrive noise of as noise order I investigators spectrometers i n C Noise ferometers, storm U storms atmosphere. investigated time D manifestations solar vational H BACKGROUND wavelengths spectacular T PH EN O M EN A H IS T O R IC A L Solar N I meter the spectrum With the existence hectometer Excellent literature. Zheleznyakov, 1970; - 2 - Wild and. Sxaerd', 1972; Fainberg and Stone,, 197^ Elgar^y, 19775. A metric and decametric noise storm consists of a smooth background radio emission, superimposed on it are narrow band short-lived type I bursts at metric band and type III bursts with or without fine structure at decameter wavelengths. Brightness temperature of the continuum and the burst may exceed 10^ °K. Obviously thermal processes cannot account for such high temperatures and so gyrosynchrotron and plasma radiation processes are suggested. Both the continuum and siperimposed bursts are circularly polarized in the same sense or opposite sense. High degree of circular polarization suggests the presence of strong magnetic fields up in the corona. Noise storm centers are found to be associated with visible optical regions on the sun’s disk. In general, noise storm activity and flare activity are two aspects of a center of activity on the sun though they may occur independently of each other. Even though the noise storms were discovered as early as 19^2 by Hey, consistent source size measurements were available only after the installation in late 1950’s of Nancay interferometer in France at meter wavelength (operating frequency 169 MHz). Source sizes in the deca meter range were estimated earlier by Wild and Sheridan (1958) and later by Gergely and Kundu (1975). A significant innovation took place when the Culgoora radioheliograph at Culgoora in Australia, operating at 80, 160 and H-3,25 MHz could obtain radio pictures of the Sun in two dimensions and two senses of circular polarization at intervals of 1 sec (Wild, 1968; Sheridan et al., 1973)* It has signifi cantly assisted in the better understanding of noise storm phenomenon and in developing the widely accepted model by Kai and Sheridan (197H-) using multi-frequency radiohelio graph data of Culgoora. The decametric type III burst is found to start at the frequency where the metric type I burst stops. The type I to type III transition region is most interesting which is around two solar radii above the photosphere (Ho MHz plasma level) since in this region, co-rotation of the corona with the sun stops and the solar wind enters into the interplanetary space. 1.1.2 NOISE STORMS AT METER WAVELENGTH At meter wavelengths noise storm is a common pheno menon. Most of the noise storms at meter wavelengths occur in the frequency range of 350 to 100 MHz. Dynamic spectra of meter wavelength noise storm bursts were made in 1950 (Wild and McCready, 1950) in the frequency range 10 to 30 MHz and later in the range 5 to 2H0 MHz. - If - W hether th e background and. s h o r t - l i v e d b u r s ts a re two d i s t i n c t components o r have a common o r i g i n i s an i n t e r e s t i n g q u e s tio n and i s w e ll d is c u s s e d i n th e l i t e r a t u r e (McCready, Pawsey and P a y n e -S c o tt, 19^7; T akakura, 1956). According t o Fokker ( I 9 6 0 ) , o b s e r v a tio n a l ev id en ce such as th e o ccu rren ce o f storm b u r s ts i n c l u s t e r s and a ls o s h o r t - l iv e d b u r s t s i n th e absence o f f l u c t u a t i o n s i n th e background r a d i a t i o n o ver a d u ra tio n o f few m inutes fav o u rs th e h y p o th e s is t h a t th e background and b irrst components a re two d i s t i n c t phenomena. B o t h s h o r t - l i v e d ( W i l d , t h e b a c k g r o u n d b u r s t s a r e s t r o n g l y 1 9 5 1 ) a n d b o t h ( P a y n e - S c o t t a n d L i t t l e , s t u d i e s o f n o i s e a n d s e n s e s s t o r m s o f 195 1 ) * a r e m o s t o f t h e c i r c u l a r l y s u p e r i m p o s e d p o l a r i z e d p o l a r i z a t i o n s D e t a i l s d i s c u s s e d i n o f a r e o b s e r v e d p o l a r i z a t i o n s e c t i o n 1.2.^, E a rly a tte m p ts were made to a s s o c ia te n o ise storm phenomenon w ith th e su n sp o t and o th e r o p t i c a l m a n if e s ta tio n o f th e s o l a r a c t i v i t y by McCready, Pawsey and P a y n e -S c o tt (1 9 ^ 7 ), L i t t l e and P a y n e -S co tt (1951), Maltby (1958) and Fokker (1 9 6 0 ). C onclusive evidence f o r a s s o c ia tio n o f th e n o ise storm c e n tre w ith 'o p t i c a l a c t i v i t y 1 was p o ss i b l e o n ly when th e m u lti-e le m e n t in te r f e r o m e te r te c h n iq u e was used by B oisehot (1958) a t 169 MHz a t Nancay i n F ran ce, - 5- N o i s e s t o r m s are a s s o c i a t e d w i t h v i s i b l e spots and two dimensional measurement of p o s i t i o n have shown t h a t n o i s e s t o r m s d o not lie v e r t i c a l l y abo v e t he o p t i c ally active centres (Malinge, 1963). Detailed discussion o n a s s o c i a t i o n of o p t i c a l a c t i v i t y of t he sun with the no i s e s t o r m i s g i v e n l a t e r i n se c t i o n 1.1.5. I t has also b e e n o b s e r v e d t h a t t h e p r o b a b i l i t y o f o b s e r v i n g n o i s e s t o r m i n c r e a s e s t o w a r d s t h e CMP. storm centers Moreover the a p p e a r t o be m o r e i n t e n s e and n u m e r o u s o n the w e s t e r n h a l f of the s u n a nd t h i s a s y m m e t r y is o p p o s i t e to t h a t o f t y p e III b u r s t as o b s e r v e d b y W i l d ( 1959 )? F o k k e r (i96 0 ) and S u z u k i (1961). et al. This asymmetry o f s t o r m c e n t e r s h a v e b e e n a c c o u n t e d as p r o p a g a t i o n s ! effect (Malinge, 1963). M e a s u r e m e n t s of a l t i t u d e of t h e n o i s e s t o r m sources f r o m t h e p h o t o s p h e r e are m o r e a c c u r a t e f o r o p t i c a l l y a s s o c i a t e d l i m b sources. sources at 169 a v e rage b e i n g M H z lies b e t w e e n 0 .5 R r> . The altitude of the limb 0 .3 a nd 7 R q , the T h e d i a m e t e r o f th e s t o r m s o u r c e decreases w i t h increasing frequency e . g . , V at 200 MHz? 1.7 ! t o 9 ! arc at in the East-West directions 150 MHz? 8' (Malinge, to 7 r arc arc at 169 M H z 1963). Moreover, t h e s o u r c e does not m a i n t a i n t h e same size d u r i n g i ts l i f e t i m e a n d t h e r e is no r e l a t i o n b e t w e e n t he flux «w» density the and diameter storm burst of the is m u c h (3 m source* less The tha n that angular of noise size of storm source. 1. 1 .3 NOISES S T O R M S Decametric region of type Decametric of type III of III Smerd, dents bursts 1972| de Groot, swept of (1) (see are in USA, and K u n d u namely They "On-fringe" position of these bursts generally found two type of and III not ). We have (decametric). a large succession, Excellent number occasion and time reviews literature on (Wild Utretch, and Correspon 197^). studied the storm with the at help kinds "off-fringe" bursts of as 65-25 of type III follows: They Starting are associated with flares frequency generally and occur MHz Observa coincide in position source. MHz. character Clark Lake Badio different continuum is b e l o w 50 asso transition in frequency in the (1975) noise "On-fringe" as Astronomy Group, Smith, a decametric the burst quick 1.2.2), available 197*H with the and sec. of III always al., 1970 et looked upon frequency interferometer tory in burst type structures Solar Badio Gergely istics to occurring fine almost significance (metric) bursts encountered type the are (Boischot continuum can be a l l y -varieties are storms storms out I DECAMETER WAVELENGTH noise ciated with metric already pointed AT w^eak over a - 7 - narrow freq u e n c y range 30-20 MHz. (2 ) " O f f - f r in g e ” ty p e I I I H u rsts a re d is p la c e d from th e p o s i t i o n o f th e continuum source by 0.1 t o 0 .5 R^, • Most o f them a re i n te n s e , a s s o c ia te d w ith f l a r e s and appear a l l o v e r th e fre q u e n c y range 65-25 MHz, As e a r l y as 1958, a tte m p ts were made to d eterm in e th e source s iz e o f d e c a m e tric n o ise storm s c e n te r s . A sw ep t-freq u en cy in te r f e r o m e te r was used i n th e freq u en cy range o f 65 t o MHz. Mean source s iz e s determ in ed a t 65 MHz and *+5 MHz were 6* and 10' a rc r e s p e c t iv e ly (W ild and S h e rid a n , 1958). Also so u rc e s iz e s d e c re a se w ith in c r e a s in g freq u e n cy and th e d e c re a se i s f a s t e r compared to t h a t a t m eter w avelength, G ergely and ICundu (197 5) j ta k in g i n t o account th e e f f e c t o f r e f r a c t i o n and s c a t t e r ing (F o k k er, 1965; and L eb lan c, 1973)j d eterm in ed th e h e ig h t and source s iz e s i n th e range o f 65 to 25 MHz. Mean so u rce s iz e tu rn e d out to be 0.51 R^, and 1.3 R<t> a t 65 MHz and 30 MHz r e s p e c t iv e ly . The h e ig h ts were d e te r mined by a p p ly in g l e a s t sq u are a n a ly s is m ethod, and assuming c o n s ta n t r o t a t i o n a l r a t e o f th e so u rc e,w h ic h a t U0 MHz and 30 MHz tu rn e d o u t t o be (1 .9 + 0.5)R^-, and (2 .3 + 0.25)R ,. r e s p e c t iv e ly . The most I n p o r ta n t c h a r a c t e r i s t i c o f d eca m e tric storm so u rc es i s t h a t th e s iz e o f th e so u rce i s no t c o n s ta n t b u t changes over a s h o rt p e rio d o f tim e . M oreover, changes i n s iz e a t 8 n e a r b y f r e q u e n c i e s are u s u a l l y not correlated. The author fe e l s t h a t t h e v a r i e t i e s o f fine s t r u c t u r e o b s e r v e d i n time and frequency plane for the (see sec, 1.2.2) m a y b e r e s p o n s i b l e s o u r c e size v a r i a t i o n as s e e n b y G e r g e l y and K u n d u (197 5 )* L i k e t h e m e t r i c n o i s e storm, d e c a m e t r i c noi s e s t o r m c o n t i n u u m is f o u n d t o h a v e more d i r e c t i v i t y at the c e n t r e o f t h e disk. T h e e a s t - w e s t a s y m m e t r y as o b s e r v e d i n t h e m e t r i c b a n d is also o b s e r v e d i n t he d e c a m e t r i c b a n d by Gergely and Kundu of Newkirk A c o m p a r i s o n w it h t he m o d e l (1 9 6 7 ) and o t h e r models o b t a i n e d f r o m ra d i o observations Erickson, (1 9 7 5 ). (Wild et a l . , 1966) 1 9 5 9 ; Weis s , 1963; M a l i t s o n and shows t h a t t h e storms o r i g i n a t e i n m o d e r a t e l y l o w t o h i g h d e n s i t y regions. D i r e c t i v i t y and systematic p o l a r i z a t i o n studies of t h e d e c a m e t r i c noi s e storms are, however, still lacking. 1 . 1,k N O I S E S T O R M S IT H E C T O M E T E R AN D K I L O M E T E R W A V E L E N G T H S R a d i o A s t r o n o m y E x p l o r e r (RAB) l a u n c h e d i n 1968, Satellite 1, a n d d e v o t e d to rad i o o b s e r v a t i o n s at l o w f r e q u e n c i e s , p r o v i d e d f o r t h e first t i m e a n o p p o r t u n i t y to o b s e r v e n o i s e sto r m s c o m p r i s i n g c o n t i n u u m r a d i a t i o n and t h o u s a n d s o f d r i f t i n g b u r s t s i n h e c t o m e t e r and k i l o m e t e r w a v e l e n g t h r a n g e s (Fairiberg and,Stone, and W e b e r et a l . , 1971 ). 1970 a,b; 1971a,b; - 9 - IMP- 6 spacecraft observations show that the source position of continuum component and that of type III burst were the same (Fainberg and Stone, 197^). During a storm a large number of type III bursts, 1 every 10 seconds, were observed near 2,8 MHz, They occur in large number when the source moves away from CMP, This effect can be either due to change in the source activity or due to refractive focusing due to corona of electromagnetic radiation in the direction of steepest density gradient. Simultaneous studies in the range of 20 to 60 MHz (decameter)- and in the range of 5 MHz to 300 kHz (hectokilometer)- showed that, while continuum is observed in the decametric range, simultaneous hectometer emission is composed of large fast drifting bursts. These observations have been interpreted by Stone et al. (1969) as the local ized region of decametric continuum acting as the storage of particles responsible for hectometric drifting bursts. Noise storm provides an opportunity to estimate exciter speed independent of coronal electron density models. The August 1968 noise storm was observed over a period of half solar rotation. Mean frequency drift rate of burst was found to be varying with longitude, being maximum at CMP, This variation in the drift rate was estimated quantitatively since at large distances from the sun, assuming the path of the outward moving sources 10 f r o m s i m p l e g e o m e t r i c a l c o n s i d e r a t i o n a nd f i n i t e v e l o c i t y (c) o f p r o p a g a t i o n of r a d i o emission. ting technique, determined T h e n b y curve f it a b s o l u t e v a l u e o f t h e s o u r c e speed w as as o , 3 7 c t o 0 , 1!- c (Fainberg a nd Stone, Further, 1970b), a s s u m i n g t h e e m i s s i o n t o b e at fun d a m e n t a l , d e n s i t i e s w e r e d e r i v e d but t h e s e d e n s i t i e s were a n o r d e r o f m a g n i t u d e h i g h e r t h a n t h a t r e q u i r e d f or solar wind. The densities e s t i m a t e d o n t h e bas i s o f s e c o n d h a r m o n i c e m i ssion, h o w e v e r , are a f a c t o r o f U- l o w e r and are i n b e t t e r a g r e e m e n t w i t h N e w k i r k ' s s u m m a r y of t h e d e n s i t y models (1967). T h i s f a c t o r m a y be s t i l l f u r t h e r r e d u c e d i f r e f r a c t i o n a n d s c a t t e r i n g ef f e c t s a re t a k e n into account. T h i s gives an i n d i r e c t s upport f o r e m i s s i o n at l o w e r f r e q u e n c i e s to be p l a s m a f r equency, Steinberg at t h e 2 nd h a r m o n i c o f t he l o c a l From theoretical consideration, (1973) sta t e s that h e c t o - k i l o m e t r i c b u r s t seems to originate at s e c o n d h armonic, W e b e r et al. and H A S - 2 satellite, (1977) w i t h the h e l p o f H e l i o s - 1 a nd 2 f o r t he fir s t t i m e h a v e d e t e r m i n e d two d i m e n s i o n a l p o s i t i o n s w i t h o u t s i t y model. a s s u m p t i o n of any d e n O n l y a s s u m p t i o n t h e y h a v e m a d e is that t h e e m i s s i o n is at 2nd h a r m o n ic. The positions obtained f r o m d i r e c t i o n finding f r o m th e spin m o d u l a t i o n b y H e l i o s - 1 and 2 agree w e l l w i t h th e a r r i v a l t i m e d e t e r m i n ations, This shows t h a t c o r r e c t i o n s due t o p r o p a g a t i o n s ! 11 e f f e c t s s u c h as - r e f r a c t i o n an d scat t e r i n g are not l a r g e e v e n i f s i m p l e g e o m e t r i c a l p a t h l e n g t h is assumed. Polarization observations i n the l o w frequency r a n g e w i l l b e v e r y m u c h rewarding. E x c e l l e n t r e v i e w s of l o w f r e q u e n c y o b s e r v a t i o n a n d stereo r a d i o been made b y Fainberg and Stone astronomy have (197*+) and S t e i n b e r g (1977). 1 . 1 .5 A S S O Cliff I O N O F N O I S E S T ORKS W I T H O P T I C A L ACTIVITY OF THE SUN Noise storms a l l o v e r t h e o b s e r v a b l e f r e q u e n c y r a n g e h a v e b e e n f o u n d t o b e a s s o c i a t e d w i t h sunspots. But t h e 2 7 - d a y cy c l e w h i c h i s o b s e r v e d i n t h e case of act i v e r e g i o n s (or sunspots) i s not n e c e s s a r i l y o b s e r v e d i n t h e c a s e o f no i s e storms. be r e l a t e d t o c e r t a i n p h a s e s regions. Thus, n o i s e s t o r m s s e e m to of development of active T h e s t o r m a c t i v i t y appears t o h a v e some co r r e l a t i o n w i t h the n u m b e r of m a j o r suns p o t s o n t h e d i s k bub it is f o u n d t h a t l a r g e r sunspots are not always a s s o c i a t e d w i t h n o i s e s t o r m activity, F o k k e r (1965), whi l e stud y i n g t h e a s s o c i a t i o n of m e t e r w a v e l e n g t h no i s e s t o r m s w i t h sunspots, f o u n d t h a t t h e noi s e s t o r m a c t i v i t y i n c r e a s e s with the a r e a as w e l l as t he m a g n e t i c f i e l d s t r e n g t h o f t h e sunspot. by S i m i l a r r e s u l t s were also o b t a i n e d p r e v i o u s l y Payne-Scott ever, and L i t t l e s t o r m cent r e s (195D a nd M a l i n g e (1963). How are not r a d i a l l y s i t u a t e d above the 12 o p t i c a l c e n te r o f a c t i v i t y b u t th e r e i s enough o bserva t i o n a l evidence to show t h a t d e ea m e trie n o ise storm s o r i g in a te i n n o n - r a d ia lly o r ie n te d c o ro n a l s t r u c tu r e s ( H a lin g e , 1963; S tew art and Labrum, 1972 ). R e c e n tly , th e dependence o f some o f th e storm c h a r a c t e r i s t i c s i n m eter w avelength re g io n such as mean i n t e n s i t y , number o f storm s p e r y e a r e t c . , on th e 1 1 -y ear s o l a r c y c le has been e s ta b lis h e d (K o ro lev , 197^). Mean i n t e n s i t y as w e ll as th e number o f n o is e storm s go on d e c re a sin g tow ards th e s o la r minimum. I t has a ls o been e s ta b lis h e d t h a t th e r e q u ir e d spot a re a s a re sm a ll i n s o l a r a c t i v i t y minimum compared t o th e re q u ire d a re a s o f th e sp o t i n th e s o la r a c t i v i t y maximum f o r storm s to o c c u r. Most o f th e storm s a re p reced ed by a f l a r e w ith in an hour (M alinge, 1963) and by im p o rta n t f l a r e s w ith in 30 m in u tes. S im ila r s tu d ie s c a r r i e d o u t i n sunspot minimum p e rio d r u l e o u t th e a s s o c ia tio n o f f l a r e s w ith n o ise storm s by ch ance. W hile stu d y in g th e a s s o c ia tio n o f d eea m e trie n o ise storm s w ith f l a r e s G ergely and B ric k so h (1975) found t h a t i n t e n s i f i c a t i o n o r o n se t o f d e eam etrie storm does not d i r e c t l y r e l a t e w ith f l a r e s . During th e sto rm , s e v e r a l a c tiv e re g io n s \rere p re s e n t on th e d is k and a number o f s u b f la re s were observed i n th e s e a c tiv e r e g io n s . These a c tiv e re g io n s appear to form a complex a t th e chromo sp h e ric l e v e l and a l l d e ea m e trie storm c e n te rs a re associated each with other. rence of This show regions (Vaiana concluded closed A for when the number the metric with storm netic source of is on with an occur other during SKYLAB several (1973) al. features have observed showed sources The frequently by Gergely a flare in basis the that were of OMP of date position coincided to of flare turned random and out the active frequency, to be twice potential positions higher of deca- associated or lower decametric the (1975) occurrences. structures be with Kundu distant calculated magnetic found in observed progress, the and mag continuum filaments or chains filaments. the ing. and et as some among coronal of studies around Studies of Vaiana the in obtained simultaneously storm arches. of association expected source evidenced subflare pictures developed that fields he interact configuration, Simultaneous coronal a 1973)* majority noise can which inter-connections al. technique showed the et loop studying region X-ray complex that regions following Excellent mission active interaction sub-flares region. were these sun with However, type region I of hecto-and Sakurai noise McMath association storm 9597 on kilometer (1971) were the with has the noise shown associated disk in optical the storms that with activity are lack hectometer the August active 1968 storm. ~ Th u s j 1V- i n vi e w of the l a c k of definite association of t h e s t o r m s w i t h t h e l a r g e m a g n e t i c suns p o t s c o r r e l a t i o n b e t w e e n the l a r g e s t sunspot o f i n t e n s i t y o f t h e noise st o r m radi a t i o n , and a p o o r a group and c o n d i t i o n f o r t he g e n e r a t i o n o f n o i s e s t o r m (other t h a n o n l y the p r e s e n c e of h i g h m a g n e t i c fields) electrons 1.2 s u c h as t he p r e s e n c e of e n e r g e t i c seems t o he necessary. H I G H R E S O L U T I O N S T U D I E S O F MQ I S E S T O R M S O U R C E S It h a s b e e n n o t e d e a r l i e r that t h e noi s e st o r m c o n s i s t s o f a c o n t i n u u m r a d i a t i o n and an e n o r m o u s n u mber o f b u r s t s h a v i n g n a r r o w band-widths and short duration. U n d e r s t a n d i n g o f t h e s e b u r s t s an d t h e i r r e l ation, i f any, to the continuum radiation is facilitated through h i g h s e n s i t i v i t y and h i g h t i m e - f r e q u e n c y - a n d s p a t i a l - r e s o l u t io n observations. B y o b s e r v i n g t e m p o r a l a nd s p e c t r a l v a r i a t i o n of solar r a d i o e m i s s i o n w i t h h i g h r e s o l u t i o n techniques, one c a n d i s t i n g u i s h b e t w e e n p h e n o m e n a i n t r i n sic t o t h e sou r c e and s u b s e q u e n t p r o p a g a t i o n ef f e c t s i n the overlying m edium (Sawant et a l . , 1976 and C h a p t e r III o f t h i s t h e sis). T h e m o s t i m p o r t a n t r e g i o n of o b s e r v a t i o n is f r o m 20 t o 80 MHz. H i g h spatial resolution observations i n decameter range are lacking because t h e y require large antennas. Multi-frequency two-dimensional observations i n t h e r a n g e o f 20 t o 110 M Hz b e i n g p l a n n e d b y M a r y l a n d - 15 - U n i v e r s i t y w i l l d e f i n i t e l y a s s i s t i n o u r u n d e r s ta n d in g o f some o f t h e p ro b le m s m e n tio n e d i n t h e f o llo w in g s e c tio n s . 1 ,2 .1 HIGH RESOLUTION STUDIES OF NOISE STORM SOURCES AT METER WAVELENGTHS For a b e t t e r u n d e rsta n d in g o f ty p e I b u r s ts and t h e i r r e l a t i o n to continuum , h ig h r e s o lu tio n s tu d ie s i n fre q u e n c y and tim e were s t a r t e d by E lg a ro y (1959) around 200 MHz. S im ila r e f f o r t s were c o n tin u e d by o th e r w orkers (de G root, 1959? E lg a ro y , 19655 de l a Noe and B o isc h o t, 1972; Ifc ise r and F a in b e rg , 197*+; de Groot e t a l . , 1976). R e c e n tly , h ig h s e n s i t i v i t y h ig h r e s o lu tio n sp e c tro sc o p e i n t h e ran g e o f9 3-186 MHz has gone i n to o p e ra tio n w ith a f r e quency r e s o l u ti o n 100 kHz and tim e r e s o l u ti o n 50 msec (K o ro lev , 1975). But not much e f f o r t has gone to im prove th e s p a t i a l r e s o l u t i o n b e t t e r th a n t h a t achieved i n th e Nancay in te r f e r o m e te r a t 169 MHz and i n C ulgoora h e lio g rap h o p e ra tin g a t 160, 80 and *4-3,25 MHz. Type I , t y p e I I I and d r i f t p a i r s a r e t h e m a jo r s p e c t r a l f e a t u r e s o b s e r v e d i n m e t r i c s to rm s o v e r and ab o v e t h e c o n tin u u m . Type I e m is s io n i s c h a r a c t e r i z e d b y s h o r t d u r a t i o n 0 .1 5 t o 0 .5 s e c and n a rro w b a n d w id th s 3 t o 6 MHz. Some b u r s t s show f r e q u e n c y d r i f t s d e g re e o f c i r c u l a r p o la r iz a t io n . and h ig h T h e se b u r s t s a r e o b s e r v e d w i t h i n t h e ra n g e o f 50 t o *4-00 MHz and h av e - 16 b r ig h tn e s s te m p e ra tu re o f th e o rd e r o f 1010 t o 1 0 °K (E lg a ro y , 1965). These b u r s ts o f te n appear s in g le i n th e tim e -fre q u e n c y p la n e . Also t h e r e i s a ten d e n cy t o c l u s t e r to g e th e r i n te n s e o r hundreds t o form what a re c a lle d narrow band nc h a in s n o f ty p e I b u r s t (W ild, 1957; E lg a ro y , 1961; H anasz, 1966; de G root, 1976). W hether ty p e I b u r s t appears s in g ly o r i n c h a in s , t h e r e i s no d i s t i n c t i o n i n t h e i r p r o p e r tie s (H anasz, 1966). c h a in s slo w ly d r i f t i n freq u e n cy . The Most ch ain s a re found t o appear below 310 MHz (E lg aro y and Ugland, 1970) where t h e h ig h freq u en cy c u t o f f f o r n o ise storm s l i e (Kundu, 1965 ). O b serv a tio n s show t h a t weak ty p e I I I b u r s ts grow o u t o f " c h a in s n which appear alm ost p a r a l l e l t o th e tim e a x is on th e dynamic s p e c tr a i n d ic a t i n g th e band s p l i t t i n g phenomenon (H anasz, 1966) as shown i n F ig . 1,1 ( a ) . How e v e r, de Groot e t a l . (1976) have no t observed such pheno menon w ith in th e freq u e n cy range (160 to 320 MHz). T his may be due to d i f f e r e n t c o n d itio n s p r e v a ilin g e i t h e r a t th e so u rc e o r i n th e p ro p a g a tio n medium a t th e tim e o f o b s e r v a tio n s , such as d i f f e r e n t lo n g itu d e o f s o u rc e , mag n e t i c f i e l d c o n fig u r a tio n , e tc . Prom th e h ig h r e s o l u ti o n (tim e and p o l a r i z a t io n ) o b s e rv a tio n s o f n o ise storm s Chernov e t a l . (1972) concluded t h a t ty p e I b u r s t and c h a in s o f ty p e I b u r s t a t m eter w avelengths p o ss e s s ZHW A o uan b sJJ (b) Fig. 1.1 (a) Simultaneous type XIX a to ra and type X a to m i n decameter range July 23, 1970 (Ifellei^y«d«rs«ut 19'A) Mask type I I I b u rst "growing'* oat o f type I chri.ua. 6S MSI February 26, 1962 17 - 18 - d i f f e r e n t s p e c t r a l end p o l a r i z a t i o n c h a r a c t e r i s t i c s which i n a d d itio n showed day to day v a r i a b i l i t y . At low f r e q u e n c ie s , th e ty p e I b u rs t d is a p p e a rs g iv in g way to d e c a m e tric ty p e I I I b u r s t . T his t r a n s i t i o n u s u a l ly occurs i n th e range o f 60-^0 MHz (M a lv ille , 1962; H anasz, 1963; S te w a rt, 1972; G ergely and Kundu, 1975) as shown i n F ig . 1.1 ( b ) . An a ttem p t t o e x p la in t h i s f e a tu r e was made by Gordon (1971) i n term s o f n o n lin e a r plasm a p ro c e sse s. A ccording to B o isch o t e t a l . (1970) and B oischot (197^)s th e ty p e I - ty p e I I I t r a n s i t i o n re g io n co rresp o n d s t o t r a n s i t i o n from c lo s e d f i e l d l i n e to open f i e l d l i n e s I n th e corona. T h is su g g e stio n i s su p p o rte d by th e la r g e a n g u la r s iz e o f th e s o u rc e s , which in c r e a s e s r a p i d l y w ith d e c re a s in g freq u e n cy and th e r e f o r e w ith in c re a s in g h e ig h ts from th e p h o to sp h e re . S te reo experim ent c a r r i e d o u t by C aroubalous and S te in b e rg (197b-) d eterm in ed th e r a d i a ti o n power p a t t e r n o f ty p e I and ty p e I I I b u r s t s . Same p o la r e v e n ts o bserved a t 169 MHz sim u lta n e o u s ly from th e e a r t h and w ith a d i s t a n t S o v ie t space p robe M ars-3 } have shown 3 db beam w id th s m a lle r th a n 25° i n th e e c l i p t i c p la n e . F u r th e r , th e s e o b s e rv a tio n s have shown t h a t ( i ) so u rc e s o f ty p e 1 a re s m a lle r th a n as seen from th e ground and a re s i t u a t e d i n o v er dense f i b r e s o r arch es which ex ten d u pto 0 .8 R q above th e p h o to sp h e re , ( i i ) a n g le o f r a d i a ti o n w ith th e - m a g n e t i c f i e l d is l e s s t h a n 19 ~ (iii) the low e r c o r o n a above t h e a c t i v e r e g i o n is f u l l o f f i b r e s a nd arches and r a n d o m s c a t t e r i n g i n t h a t m e d i u m accounts f o r all t h e o b s e r v e d p r o p e r t i e s of t y p e I burst, a n d (iv) type III bursts are less d i r e c t i v e c o m p a r e d t o t y p e I bu r s t a nd t h e r e is e n o u g h e v i d e n c e f or t he p r e s e n c e o f large scale d e n s e s t ructures. Observations obtained with Culgoora Hadioheliog r a p h c o m b i n e d w i t h o p t i c a l d a t a suggest t h a t t y p e I sources the are l o c a t e d o n m u l t i p l e strong f i e l d loops a nd s o u r c e s o f s p o radic t y p e III bur s t o n w i d e l y d i v e r g i n g f i e l d lines (KaA a n d S h e r idan, At p r e s e n t t h e r e i s p l a i n t y p e I burs t s 197*+)» no cons i s t e n t t h e o r y t o ex a l o n g w i t h t he f o r m a t i o n o f " c h a i n s 1' o n t h e h i g h e r f r e q u e n c y side o f s p e G t r a a nd w h i c h g r o w i n t o t y p e I I I b u r s t a n d o n t h e l o w e r side o f spectra, t r a n s i t i o n o f 'type I t o d e c a m e t r i o t y p e III. Many theories have been put forward b y various workers s u c h as W i l d a n d T l a m i c h a (196**-), T r a k h t e n g e r t s (1966), G o r d o n (1971), Z a i t s e v and Fomlchev (1973) w h i c h e x p l a i n o n e o r t h e o t h e r f e a t u r e s l e a v i n g the r e m a i n i n g o n e s u n e x p l a i ned. O t h e r m a j o r s p e c t r a l f eature o b s e r v e d is the d r i f t pair. A drift p a i r contains t w o i d e n t i c a l ele ments, t h e s e c o n d b e i n g th e r e p e t i t i o n of t h e first a n d 20 - i s "observed a l t e r a d e la y o f 1 t o 2 seconds (R o b e rts , 1958). Each elem ent has a t o t a l d u r a tio n o f 0 .5 t o U- seconds and an in s ta n ta n e o u s band-width being from 0 ,3 t o if MHz, T y p ic a l tim e d e la y s betw een th e two elem ents of a d r i f t p a i r o f 1 t o 2 seconds were e x p la in e d by R oberts (1958) as due to an echo phenomenon a t th e second harm onic e m issio n . I n f a c t , o b s e rv a tio n s of a s in g le t r a c e a t h a l f th e fre q u e n c y (de l a Noe and Mo11e r-P e d e rse n , 1971)> su p p o rt t h i s h y p o th e s is . However, to e x p la in o th e r o b serv ed s p e c t r a l f e a t u r e s , such as d u ra tio n a t fix e d f r e q u e n c ie s , a s s o c ia tio n w ith ty p e I I I b u r s t , d r i f t r a t e s , narrow band e m issio n , de l a Noe p roposes an e x p la n a tio n f o r th e d r i f t p a i r s based on th e p o s s ib le e x is te n c e o f so u rc e s f o r e le c tr o n a c c e le r a tio n i n th e upper co ro n a. 1 .2 .2 HIGH RESOLUTION STUDIES IN DBC.AMETBR WAVELENGTH R e s o lu tio n s i n tim e and freq u e n cy com parable to t h a t o b serv ed i n m e tric band was n o t r e a l i s e d i n th e decam eter band t i l l l a t e 196o’s . E l l i s & McCulloch (1966) i n i t i a t e d h ig h r e s o l u ti o n work i n tim e (20 ms) and fre q u e n c y (30 kHz) i n th e range 28 to 36 MHz. T able 2,1 i n C hapter I I summar i z e s th e h ig h r e s o l u ti o n sp e c tro sc o p e s and m u lti-c h a n n e l r e c e iv e r s developed from tim e t o tim e i n th e decam eter ra n g e . O b serv a tio n s i n th e d eca m e tric range were i n i t i a t e d by de l a Noe and B oischot (1972) w ith h ig h s e n s i t i v i t y and h ig h r e s o lu tio n in time (1 0 ms) and freq u e n cy 21 - (60 KHz) o n l y recently, V a r i e t i e s o f s p e c t r a l features storm bursts, dr i f t p a i r s , stria bursts, s u c h as fast dri f t split p a i r s , tr i p l e t s , t y p e Illb, V - s h a p e d b u r s t s , t y p e Illd, h o o k b u r s t s,etc., h a v e b e e n o b s e r v e d i n d e c a m e t r i c noi s e s t o r m o b s e r v a t i o n s o b t a i n e d b y e m p l o y i n g h i g h t i m e - f r e q u e n c y r e s o l u t i o n and h i g h sensitivity techniques. Some o f t h e s e burs t s h a v e b e e n s h o w n i n Fig. c, d). 1,2 (a, b, O b s e r v a t i o n s of t h e s e s p e c t r a l f e a t u r e s r e n d e r v a l u a b l e i n f o r m a t i o n s u c h as: a) N a t u r e o f p l a s m a i n t he c o r o n a a r o u n d t wo solar radii ( T a k a k u r a and Yousef, 1975; Melrose, 1975; S a w a n t et a l . , 1976)., b) L o n g i t u d i n a l d e p e n d e n c e of n o i s e s t o r m b u r s t s f or s t u d y i n g the p r o p a g a t i o n ef f e c t s c) High sensitivity and h i g h time (de l a Noe, 1975). and f r e q u e n c y r e s o l u t i o n d e c a m e t r i c o b s e r v a t i o n s of the quiet s u n a n d b u r s t s for t h e u n d e r s t a n d i n g o f s c a t t e r i n g effects i n the c o r o n a a nd n a t u r e o f ex c i t e r r e s p o n s i b l e for bursts. M a i n f e a t u r e s o f t h e c o m m o n l y o b s e r v e d burs t s h a v e b e e n s u m m a r i z e d below: - 22 l0-8-<6 10 - 8 - 7 6 3 5 -0 R FREQUENCY HIA1 ) 3 4 -6 3 4 - 20 4 01 31 0 4 01 32 TIME U.T HOURS iw ' ' 03 53 0 0 03 53 01 TIME U-T. HOURS 13 - 1-77 31-3-76 34-3 (c ) 050143 050146 TIME U T HOURS 3 4 -0 (a) 0 6 :46:58 TIME 50 1.2 0 6 :47:00 U T HOURS V a rie tie s o f deeajaetric b u rs ts observed by H„R.S. a t Ahmedabad: (a ) S t r i a b u rs t, (b) S p lit p a i r , (c ) Long d u ra tio n t r i p l e t and (d) type I l l d b u rs ty i n R» and L - p o la r iz a tio n s . SPLIT PAIR E l l i s and McCulloch (1966) d isc o v e re d " s p l i t p a ir s " as c o n s is tin g o f two p a r a l l e l s h o r t l iv e d h u r s t s , sometimes d r i f t i n g tow ards th e low fre q u e n c y . These h u r s ts a re m ostly o b serv ed below 60 MHz w ith th e average d u r a tio n o f 1-2 sec as shown i n F ig . 1 .2 ( b ) . Two elem ents of th e b u r s t do not u s u a lly b e g in e x a c tly a t th e same tim e 5 th e lo ite r freq u e n cy elem ent s t a r t s on an average e a r l i e r th a n th e h ig h freq u e n cy one. I n g e n e ra l, th e h ig h freq u e n cy elem ent i n a p a i r i s more in te n s e th a n th e low fre q u e n c y one and i n t r i p l e t s th e m iddle i s more in te n s e th a n th e o th e r two. The d r i f t r a t e o f each elem ent i s o f th e o rd e r o f 0 ,1 MHz/sec. and th e freq u e n c y s e p a r a tio n betw een two elem ents in c r e a s e s w ith fre q u e n c y , th e average v a lu e being 0 .1 MHz a t 25 MHz t o 1 MHz a t 60 MHz. The bandw idth o f t h e h ig h fre q u e n c y elem ent i s about 0.05 MHz. These b u r s t s can occu r i n i s o l a t i o n , i n ch ain s and a s s o c ia te d w ith ty p e I I I b u r s t s . In about 10^ o f th e o bserved s p l i t p a i r b u r s t s , t r i p l e s p l i t t i n g was o b se rv e d . I n th e double c h a in o f b u r s t s , c h ain s were found t o be harm onic a lly re la te d . A v a r i e n t o f s p l i t p a i r i s "V" shaped b u r s t (B aselyan e t a l . , 197^ I ) and i s d is c u s s e d i n C hapter IV . - 2 lf - The h ig h s e n s i t i v i t y ( 1 0 —2 2 „ p Wm „ -i Hz ) and h ig h r e s o l u ti o n i n tim e and freq u e n cy o b s e rv a tio n s i n th e range o f 20 - M3 MHz and ^0 - 80 MHz o f de l a Hoe and B oischot (1972) along -with th e p o s i t i o n a l in fo rm a tio n o f th e storm (de l a Noe, 1975) d u rin g two conse-cutive h a l f s o la r- r o t a tio n s have le d t o th e fo llo w in g new r e s u l t s . STRIA BURSTS A l a r g e number o f s in g le b u r s ts i d e n t i c a l t o an i n d iv id u a l elem ent o f s p l i t p a i r were observed and were named as " s t r i a " b u r s ts (de l a Noe and B o isc h o t, 1972). Of th e s e 25$ were grouped to form s p l i t p a i r s . H e lio g ra p h ic l o n g it u d i n a l dependence o f th e spec t r a l p a ra m e te rs o f s t r i a , s p l i t p a i r , and t r i p l e t a l l grouped i n to ty p e I l l b were in v e s tig a te d . The fo llo w in g r e s u l t s came out o f th e a n a ly s is : 1, The d a il y average freq u e n cy o f o c cu rren c e i n case o f s t r i a , s p l i t p a i r , t r i p l e t s and ty p e I l l b b u r s ts shoxfed minimum when a c tiv e re g io n s were lo c a te d n e ar th e c e n t r a l m erid ia n o f th e Sun, 2. The average d u r a tio n of s t r i a , s p l i t p a i r , t r i p l e t and ty p e I l l b in c r e a s e s from h ig h t o low freq u e n cy and fo llo w s an e x p o n e n tia l law . T his d u ra tio n i s l a r g e r f o r so u rc es n e a r th e lim b th a n t h a t a t CMP. - 25 3. Average d r i f t r a t e s v a ry from day to day b u t th e v a r i a t i o n i s random i n term s o f th e average lo n g itu d e . The average d r i f t r a t e ran g es betw een 0-150 k H z/sec. In s ta n ta n e o u s ban d \fid th and freq u e n c y s p l i t t i n g i n a s p l i t p a i r and t r i p l e t a re independent o f lo n g itu d e . I n s p l i t p a i r s and t r i p l e t s , elem ents have in s ta n ta n e o u s bandw idth n arrow er th a n th o s e o f s in g le s t r i a e , th e aver age r a t i o b ein g 1 s1 .5 . DIFFUSE STRIA BURST E s s e n t i a l l y th e s e d i f f u s e b u r s ts a re o f lo n g e r d u r a tio n and e x h ib it no fre q u e n c y d r i f t (B a sely a n e t a l . , 197^ I , I I ) . Average d u r a tio n a t 25 MHz i s c=-10 s e c . The in s ta n ta n e o u s bandw idth o f d if f u s e s t r i a b u r s t i s 1 .5 to 2 tim e s l a r g e r th a n t h a t of th e o rd in a ry s t r i a b u r s ts ( 0 .1 2 MHz a t 25 MHz). They may be a ls o grouped t o form s p l i t p a i r , t r i p l e t and c h a in s . Chains o f d if f u s e s t r i a b u r s t s a re named as ty p e I l l d b u r s t and i n g e n e ra l ty p e H i d b u r s t fo llo w s ty p e I I I b u r s t and a re r e l a t e d by F-H r e l a ti o n s h i p (B asely an e t a l . , 197^ I I ) . No p o lar-- i z a t i o n i s o b serv ed f o r th e s e b u r s ts (de l a Noe, 1975). TYPE IH to BURSTS Chains o f s t r i a , s p l i t p a i r s , and t r i p l e t s have been named as ty p e I I l b b u r s ts by de l a Noe and B oischot (1 9 7 2 ). Type I l l b b u r s ts a re o bserved i n decam eter 26 - wavelength regions as frequently as decametric type III hursts and rarely in the meter wavelength (Ellis and McCulloch, 1967? Boischot, 1973; Baselyan et al., 197*4- (I, II); Takakura and Yousef, 1975). Drift rate of type IXIh hursts are approximately twice the drift rate of type III hurst in the same range (Baselyan et al., 197*4-11). The main spectral properties of type Illh hursts are summarized as follows; Type Illh hursts are observed more frequently at a low frequency around 35 MHz (de la Noe and Boischot, 1972). The observations reported in this thesis have been made around the same frequency range. The number of elements in type Illh hurst is found to have longitudinal dependence and is minimum at (de la Noe, 1975). CMP This number can he as large as *4-0 in 80 to 25 MHz range (Boischot, 1973). In general, the number of elements in type Illh is small and in the limit? stria hurst can he Illh hurst reduced to a single element. Detailed analysis of the time delay and frequency ratio between the two related type Illh and type III hurst favours the F-H hypothesis (Ellis and McCulloch, 1 9 6 7 ; Baselyan et al., 197*4- (I, II); Takakura and Yousef, 1975; Meiser and Fainberg, 1975). de la Noe and Boischot (1972) feel that type Illh is likely to he a precursor of type III hurst (de la Noe, 1973). An excellent example of - U burst 27 s u p p o r t i n g F - H h y p o t h e s i s is g i v e n b y St e w a r t (1975)* S t r i a t i o n i n f r e q u e n c y is o b s e r v e d i n the f u n d a m e n t a l w h i l e t h e h a r m o n i c is s m o o t h (Fig. relationship III b u r s t s 1.3 )• F - H and p r e c u r s o r h y p o t h e s i s f o r t y p e I l l b - t y p e are d i s c u s s e d i n d e t a i l i n C h a p t e r I V of t h i s thesis, T h e C u l g o o r a s p e c t r o g r a p h and r a d i o h e l i o g r a p h observations s h o w t h a t t y p e Illb p o s i t i o n m a y v a r y i n a t y p e III group. No s i g n i f i c a n t d i f f e r e n c e w as fou n d b e t w e e n t h e p o s i t i o n o f t y p e I I l b p r e c u r s o r a nd the f o l l o w i n g t y p e III burst. T h e a n g u l a r size o f t y p e I l l b an d a s soci a t e d t y p e III b u r s t o c c u r r i n g as a p a i r as judged f r o m 0 . 3 5 t i m e s t h e m a x i m u m c o n t o u r tu r n s ou t to b e about t o 2 0 ’ o f arc at the 1^' s a me p o s i t i o n at 80 MHz. A b r a n i n et a!, (1975) h a v e d e t e r m i n e d t he a n g u l a r s i z e o f s o u r c e s i n 25 to 12,5 M Hz range. The size o f i n d i v i d u a l s t r i a c a n b e less t h a n 10* o f arc i n 26-2*f MHz band. A n g u l a r sizes o f d i f f u s e t races, second h a r m o n i c , are 20' a nd which ace p r o b a b l y o f a rc at 25 and 12.5 MHz respectively. No s i g n i f i c a n t change i n t h e sizes o f t h e sources o f t h e s e c o n d h a r m o n i c was o b v i o u s l i f e t i m e o f t y p e I l l b burst. d u r i n g t he T h e e n t i r e r e g i o n of emis s i o n i s u s u a l l y no l a r g e r t h a n the s o u r c e o f t he s e c o n d harmonic (type III) a n d c o i n c i d e s w i t h it i n position. 2 £ 28 - FREQUENCY (MHz) to - 06h31m 10 Fig, 1.3 3lm 305 UT In v e rte d -IJ b u r s t rec o rd ed by th e Culgoora sp e c tro g ra p h . On th e o r i g i n a l spectrogram th e b rig h te n in g a t th e b e g in n in g o f th e down s tro k e o f th e fundam ental i s seen to c o n s is t o f two c l e a r l y s e p a ra te d s t r i a e . I n t e n s i t y v a r i a ti o n s o b serv ed i n th e range o f 110 t o 200 MHz a re in s tr u m e n ta l o r i g in (S te w a rt, 1975). - 29 - Apart from these commonly observed features, other features such as fast drift storm burst, hook burst, drift pair, etc,, are also observed. Fast drift storm bursts are observed during decametrie noise storm. groups of 10 to 20 bursts. They occur in Drift rates of these bursts are ■within the range 1 to 2 MHz/sec and bandwidths ^ 30 kHz. HOOK BURSTS Hook bursts are associated with drift pairs and look like U burst. Drift rate and bandwidths are similar to that of a drift pair but the slope is suddenly reversed producing a curved trace of increasing frequency. On dynamic spectra, it looks like VLF hooks produced by elec tron streams in the Earth's atmosphere (Ellis, 1969). High resolution observations during decametrie noise storms in the range (70 to 2 h ,^ MHz) for about 15 months (December 1972 to February 197*+) were analyzed by MollerPedersen (197^) to find the dependence of spectral features on heliographic longitude. Very interesting results came out; type Illb bursts were observed when the storm was located away from CMP while type III bursts were observed when the storm was near CMP, Drift pairs are observed only over narrow range of longitude near CMP within the small cone of emission. Their studies show that character istics of decametrie noise storm does not depend on density - 30 - o r m agnetic f i e l d and a re c o n s is te n t -with c o n c lu sio n s drawn by K orolev ( 197*+). They have a ls o su g g e ste d t h a t a l l storm b u r s ts a re e m itte d sim u lta n e o u s ly b u t a re e m itte d i n d i f f e re n t d i r e c t i o n s . T h is in fe re n c e sh o u ld be checked by S o la r s te r e o ra d io astronom y experim ents w ith space c r a f t s . We have seen t h a t a d ecam etric n o ise storm o f long d u r a tio n g e n e r a lly ev o lv es as ty p e I l l b n e a r CMP becomes as ty p e I I I and ends a s ty p e I l l b , Storms o f o n ly ty p e I l l b , ty p e I I I and ty p e I l l - d r i f t p a i r s have a ls o been o b serv ed . High s e n s i t i v i t y and h ig h tim e r e s o l u ti o n te c h n iq u e has f o r th e f i r s t tim e p e rm itte d th e o b s e rv a tio n o f th e q u ie t sun i n th e decam eter ra n g e . O bserved low tem pera t u r e s can be e x p la in e d as due to s c a t t e r i n g o f th e r a d i a tio n i n an inhomogeneous co ro n a. i s o f th e o rd e r o f 0,5 x 10^ °K, e n t (w hich E stim a te d te n p e r a tu r e A slo w ly v a ry in g coirpon- i s w e ll o b serv ed i n th e m eter and d e cim e ter w av elengths) needs to be m easured i n th e decam eter ra n g e . D uring n o ise sto rm s, ty p e I I I b u r s t s oust above th e q u ie t sun background a t 60, 36.9 and 2 ^ ,3 MHz were observed (A ubier and B o is c h o t, 1972), From th e observed tim e p r o f i l e s th e y o b ta in e d average v a lu e s o f e x c i te r f u n c tio n d u r a tio n as 3 .9 j 6 .2 and 7 .5 sec r e s p e c tiv e ly and average decay tim e c o n s ta n t 2.0 se c a t a l l th e t h r e e f r e q u e n c ie s . A r e l a t i o n was e s ta b lis h e d betw een th e - duration shown time of and that the coronal constant the decay an i n p r o v e d method, results were (Barrow and 1*2.3 time. derived assumption were hut obtained Achong, Using this temperatures w i t h the plasma waves 31 - lower than with less in the 19755 of it from the decay expected. By using sensitivity, and HIGH R E S O L U T I O N O B S E R V A T I O N S AMD KILOMETER WAVELENGTHS was collisions! damping interval Achong relation of 15 Barrow, AT to similar 36 MHz 1975). BECTO At p r e s e n t h ig h r e s o l u ti o n o b s e rv a tio n s i n h e c to and K ilom eter range a re sim ply la c k in g , T his may be due to c o n s tr a in t on space borne experim ents re g a rd in g s iz e and w eig h t. T ech nical co n sid er a tio n puts c o n str a in t on th e s iz e o f antennas which in tu rn puts lim it on s e n s i t i v i t y i and a n g u la r r e s o l u ti o n . S e n s i t i v i t y and dynamic ran g e o f th e r e c e iv e r s a re a ls o hampered by space c r a f t 's su b -sy stem r a d io freq u e n c y i n te r f e r e n c e (KFI) w hich most o f te n o c cu rs i n low fre q u e n c y band and can b o ard . s a tu r a te th e r e c e iv e r s on Time r e s o lu tio n and freq u en cy range o f th e r e c e iv e r s a re lim ite d by th e te le m e tr y d a ta r a t e system s though th e p r e s e n t te c h n o lo g y p e rm its th e use o f h ig h te le m e try ra te s . - 32 Radio astronom y s a t e l l i t e s and in g en eo u s a n a l y s i s methods have y ie ld e d c o n s id e ra b le knowledge o f th e i n t e r p l a n e t a r y space and h e c to -k ilo m e te r n o is e storm s. RAE-1 s a t e l l i t e launched i n J u ly 1969 was th e f i r s t s a te l l i t e devoted e n t i r e l y to ra d io o b s e rv a tio n s a t low f r e quencies (0 .2 t o 9 MHz) (Weber e t a l . , 1971). Thousands o f ty p e I I I b u r s t s and storm s have been d e te c te d (F ain b erg and S to n e , 197*0. The IMP-6 s a t e l l i t e was t h e f i r s t t o p ro v id e th e o b s e rv a tio n s w ith h ig h s e n s i t i v i t y and a c c u ra te d i r e c ti o n s o f ra d io so u rc es u sin g s p in modu l a t i o n te c h n iq u e su g g ested by S lysh (1 9 6 7 ). A ccurate a sp e c t in fo rm a tio n ^ 1 ° was o b ta in e d from o p t i c a l se n so rs . I t a ls o p ro v id e d an o p p o rtu n ity f o r th e sim u ltan eo u s o b s e rv a tio n s o f e n e rg e tic p a r t i c l e s (p ro to n s and e le c tr o n s ) and ra d io em issio n . F o r th e f i r s t tim e , a sweep freq u e n cy r e c e iv e r i n th e ran g e if—2 M s w ith tim e r e s o l u ti o n o f 2 seconds and freq u e n cy r e s o lu tio n o f 20 kHz was flow n on 0G0-3 i n 1966. O b se rv a tio n s o f ty p e I b u r s t were in c o n c lu s iv e (Haddock and G raodel, 1970), I t w i l l be rew arding to lo o k in to d a ta o b ta in e d f o r ty p e I l l b - l i k e r a d i a t i o n . Time r e s o l u ti o n o f th e o rd e r o f 0 .5 sec and e x is tin g freq u e n c y r e s o l u ti o n ( cm 10 kHz) along w ith c i r c u l a r p o l a r i z a t i o n o b s e rv a tio n a re b a d ly needed a t p r e s e n t f o r b e t t e r u n d e rsta n d in g o f th e I l l b b u r s ts - 33 - a n d t h e i r r e l a t i o n w i t h t y p e III. S i m u l t a n e o u s ground- b a s e d o b s e r v a t i o n s w i l l b e o f gre a t value. We hope that w i t h the Voyager mission already l a u n c h e d i n August 1977 a n d s i m u l t a n e o u s g r o u n d - b a s e d o b s e r v a t i o n s w i l l t h r o w light o n some o f the cu r r e n t p r o b l e m s i n t h e h e c t o - a n d k i l o m e t e r w a v e l e n g t h range. P O L A R I Z A T I O N S T U D I E S O F N O I S E STOR M S C o m p r e h e n s i v e studies o f t h e p o l a r i z a t i o n b e h a v i o u r o f no i s e s t o r m s made by Fokker (i9 6 0 ) at m e t r i c w a v e l e n g t h s h a v e b e e n a nd S u z u k i (1961) a r o u n d 200 MHz. No c o m p r e h e n s i v e p o l a r i z a t i o n studies o n d e c a m e t e r n o i s e storms are c u r r e n t l y available. h e c to-and kilometer ranges Nevertheless, P o l a r i z a t i o n st u d i e s i n are s i m p l y not existing. s c a n t y p o l a r i z a t i o n d a t a at d e c a m e t e r w a v e lengths are a v a i l a b l e f r o m W a r w i c k a n d D u l k ( 1 9 6 9 ), E l l i s (1969)) de l a Noe a n d B ois e h o t (1972) a n d S a s t r y (1 9 7 2 ). B o t h t h e c o n t i n u u m e m i s s i o n a n d the rad i o b u rsts at m e t e r w a v e l e n g t h s are s t r o n g l y c i r c u l a r l y p o l a r i z e d . O p p o s i t e se n s e o f p o l a r i z a t i o n i s also o b s e r v e d o f t he c o n t i n u u m a n d t h a t o f the s u p e r i m p o s e d bursts. O f t e n the c o n t i n u u m and b u r s t s h a v e th e same s e n s e o f p o l a r i z a t i o n , W e a k l y p o l a r i z e d o r u n p o l a r i z e d s t o r m s h a v e also b e e n o b s e r v e d but t h e i r p o s i t i o n s t h o s e o f t h e p o l a r i z e d storm. are f o u n d to b e h i g h e r t h a n . - 31)-- Malinge studied the sense of polai-ization of noise storms as a function of their position at 1 69 I960 ; 1963). About MHz (Malinge, 90$ of right handed polarized storms are situated in the northern hemisphere and about 90% of the left handed polarized storms are situated in the south ern hemisphere. The storms with variable polarization are found near the equator. The polarization of noise storms is very strong near the CMP and it tends to decrease and become unpolar ized near the limb. This fact can be explained in terms of the assumed variation of height of ;the storm center. The sunspot magnetic field at greater heights near the limb may be weak or disordered resulting in the polariza tion to be weak or random. However, the fact that strongly polarized storms are occasionally observed near the limb and that an unpolarized storm near the limb may develop into a strongly polarized storm in the course of a day indicates that the polarization behaviour may be related to the magneto-ionic conditions in the vicinity of the source in the corona. The sense of polarization of the noise storm radiation is related to the sense of magnetic field of the associated center of activity and is related to the leading spot of the largest in size in the group. The spot polarity is opposite in the two hemispheres and - 35 - reverses at each sunspot cycle (Thiessen, 1952; Babcock, 1959). Two noise storms were studied (May 17-23, and June 7-13, 1969) by Chernov et al,, 1972 in meter wave length with simultaneous high resolution observation of spectrum, flux density and polarization. Other research ers such as Bhonsle and McNarry (196 k), Rao (1965) and Harvey and McNarry (1970) had observations of only one of the above types and hence, could not study the microstruc ture of storm phenomena. Consistent with other observers, they found that same sense of polarization prevails for type I burst, chains and continuum. They also observed that the degree of polarization of type I burst and chain increases at the initial stage of storm development. Once it attains 100$ then it remains same till the end of storm. The two storms mentioned above differed in polar ization so far as the isolated bursts are considered. In the case of May 1969 storm, the degree of polarization cf the burst was weak but changed within the life time of burst and reached maximum when intensity of the burst was maximum. On the contrary, in the June storm, the degree of polarization remained the same during the life time of burst, even when it was relatively weak. This difference in polarization and changes in other properties of burst may be due to their different longitudinal positions, storm centers and their evolutions. - 36 - In t h e decam eter ra n g e , h ig h tim e r e s o lu tio n spec t r a l measurement along w ith p o l a r i z a t io n was i n i t i a l l y s t a r t e d hy Warwick and Bulk (1969) and E l l i s (1 9 6 9 ). E l l i s (1969) found t h a t i n th e c ase o f a s p l i t p a i r "both components were p o la r iz e d i n th e same sense v i z . , r i g h t handed lo o k in g i n th e d i r e c t i o n o f p ro p a g a tio n correspond in g to th e o rd in a ry sense o f p o l a r i z a t i o n w ith re s p e c t t o th e le a d in g sun sp o t o f th e group. c ir c u la r p o la riz a tio n . No b u r s t showed pure S t r i a b u r s ts can be p u r e ly c i r c u l a r l y p o la r iz e d . O bviously, th e p o l a r i z a t i o n o f ty p e I l l b should be th a t of s p lit p a ir, A g iv e n ty p e I l l b b u r s t need not n e c e s s a r ily be p o la r iz e d , but i f i t i s p o la r iz e d , th e n t h e r e e x is ts a predom inent sen se o f p o l a r i z a t i o n (de l a Noe and B o isc h o t, 1972). 1 .3 REFRACTION and scattering effects i n the corona Once e le c tro m a g n e tic waves a re g e n e ra te d a t th e so u rc e th e y w i l l have to p ro p a g a te th ro u g h th e o v e rly in g c o ro n a . Near th e so u rc e , r e f r a c t i o n and s c a t t e r i n g e f f e c t s w i l l dom inate and w i l l have to be ta k e n i n t o account f o r th e d e te rm in a tio n o f source s iz e s and t h e i r p o s i t i o n s . D uring subsequent p ro p a g a tio n , d i f f e r e n t i a l a b s o rp tio n , mode c o u p lin g , F araday r o t a t i o n , d is p e r s io n e f f e c t s w i l l m odify th e s p e c t r a l and p o l a r i z a t i o n c h a r a c t e r i s t i c s o f th e ra d ia tio n . - 37 - R e f ra c tio n i n th e co ro n a a r i s e s because o f th e la r g e s c a le g ra d ie n ts i n th e e le c tr o n d e n s ity i n th e c o ro n a. N eg lectin g th e e f f e c t o f m agnetic f i e l d and c o l l i s i o n s , th e e f f e c t o f r e f r a c t i o n can be e s tim a te d . I t can be shown t h a t th e em ission which o r i g in a te s c lo s e t o th e lim b w ill ap p ear t o be s h i f t e d tow ards th e c e n te r o f th e d is k . On t h e o th e r hand f o r so u rces c lo s e t o th e c e n te r o f th e d is k t h e r e w i l l be n e g lig ib le s h i f t . R e fra c tio n dom inates th e em issio n n e a r th e plasm a l e v e l as compared to th e s c a t t e r in g e f f e c t . Harmonic r a d i a ti o n fo llo w s c lo s e ly th e p a th o f u n s c a tte r e d r e f r a c t e d r a d i a t i o n (Fokker, 1965$ Fokker and R u tte n , 1967$ S te in b e rg e t a l . , 1971$ and R id d le , 1972). In a d d itio n t o smooth v a r i a ti o n s o f th e e le c tro n d e n s ity i n th e c o ro n a, sm a ll s c a le d e n s ity f l u c t u a t i o n s a re a lso p r e s e n t i n th e c o ro n a . E f f e c ts o f s c a t t e r i n g have been e s tim a te d by using n u m erical approach and assuming s p h e r ic a lly sym m etrical c o ro n a w ith o u t c o n sid e rin g th e e f f e c t o f m agnetic f i e l d . T his was done i n i t i a l l y by Fokker (1965) and Fokker and R u tte n (1967) assuming i s o t r o p i c in h o m o g e n e itie s and n e g le c tin g r e g u la r r e f r a c t i o n . S te in b e rg e t a l . (1971) in tro d u c e d r e g u la r r e f r a c t i o n . I t was found t h a t th e appa r e n t so u rce i n t e n s i t y i s a fu n c tio n o f h e lio g ra p h ic lo n g i tu d e . R id d le (1972) extended t h i s tre a tm e n t to a n is o tro p ic in h o m o g e n e itie s, r a d i a l l y e lo n g a te d , and coirputed th e e f f e c t on ty p e I I I so u rc e a t 80 MHz w ith th e fo llo w in g c o n c lu sio n s: - i) 38 - T h e d i r e c t i v i t y d e c r e a s e s for f u n d a m e n t a l and h a r m o n i c r a d iation* ii) I n t h e t r a n s v e r s e p l a n e source size i n c r e a s e s h ut i n the r a d i a l d i r e c t i o n change is l i t t l e since i n this plane s y s t e m a t i c r e f r a c t i o n alwa y s re d u c e s the a p p a r e n t source size. iii) T h e e f f e c t o n sizes o f h a r m o n i c r a d i a t i o n is o b v i o u s l y small, a nd i n fact source m o n i c are s m a l l e r up t o 0 - 60° sizes o f h a r after t h e y b e c o m e c o m p a r a b l e w i t h f u n d a m e n t a l and are lar g e for s o u r c e s o n limb. iv) P o s i t i o n shift o f f u n d a m e n t a l and s e c o n d h a r m o n i c is shown to be away f r o m the centre and towards the c e n t r e respect i v e ly, d u e t o scattering. i o n w h i c h is d o m i n a n t t o w a r d the center. But refrac- at f u n d a m e n t a l w i l l shift Thus, while e s t i m a t i n g r e l a t i v e p o s i t i o n o f f u n d a m e n t a l and s e c o n d harmonic, p a t h e f f e c t s w i l l a d d and f or i s o t r o p i c a l l y emitting sources, t r u e d i f f e r e n c e s o f p o s i t i o n i n funda~ m e n t a l and h a r m o n i c w i l l b e c a n c e l l e d out, v) L i f e t i m e of s o u r c e s w i l l i n c r e a s e since the o b s e r v e d d u r a t i o n is t h e bu r s t d u r a t i o n p l u s t h e s c a t t e r i n g d u ration. - 39 - S t u d i e s o f t y p e I I I "burst m a d e b y M c L e a n (1971) Stewart (1972) Riddle (1972) and are c o n s i s t e n t -with t h e s e conclusions. f u r t h e r m o d i f i e d this m o d e l w i t h o u t s p h e r i c a l s y m m e t r y for s t u d y i n g the i n f l u e n c e o f a s t r e a m e r w h e n t h e sour c e is l o c a t e d i n it. R e c e n t l y S m i t h and R i d d l e (1975) h a v e d e v e l o p e d a m o d e l f o r t y p e III b u r s t c o n s i d e r i n g t h e effect of s catter ing of r a d i a t i o n i n the s o urce itself. T h e most i m p o r t a n t result is t h a t t h e s c a t t e r i n g i n t h e sour c e does not alwa y s h a m p e r t h e a m p l i f i c a t i o n o f t h e fundamental. I n fact, it h a s b e e n s h o w n that t h e w e a k sca t t e r i n g u n d e r t he c i r c u m s t ances h e l p s t h e p r o c e s s o f amplification. I n general, in t y p e I l l b - t y p e III, t y p e I l l b is m o r e i n t e n s e and t y p e III is m o r e diffuse. h a r m o n i c r a d iation. T h i s i s the si g n a t u r e o f f u n d a m e n t a l The interpretation of these bursts w i t h t h e i r i n t r i c a t e f i n e s t r u c t u r e i n t h e fir s t t r a c e is simple i n t e r m s o f a m p l i f i c a t i o n p r o c e s s o n v e r y small scale i n h o m o g e n e i t i e s . This can happen if the source i s extremely inhomogeneous so t h a t s m a l l r e g i o n s exist w i t h v e r y h i g h l e v e l o f the e n e r g y d e n s i t y i n p l a s m a waves w h i c h a l l o w t h e f u n d a m e n t a l to b e a m p l i f i e d i n spite of scattering, b u t c o n t r i b u t e l i t t l e to e m i s s i v i t y of t h e harmonic. - Ho - As e le c tro m a g n e tic waves p ro p a g a te o u t i n th e c o ro n a , o th e r p ro p a g a tio n e f f e c t s w i l l a lso a f f e c t th e ra d ia tio n c h a r a c te r is tic s . Am plitude w i l l be damped e i t h e r by c o l l i s i o n a l damping a n d /o r c o l l i s i o n l e s s damp in g , (Landau damping) A ubier and B o isch o t ( 1 9 7 2 ) , Harvey and A ubier (1 9 7 3 ) and A ubier (1 9 7 H ). I n v e s tig a tio n s of t h i s had l e d t o th e u n d e rsta n d in g o f th e te m p e ra tu re o f th e'co ro n a a n d /o r th e n a tu re o f e x c i t e r fu n c tio n (S o la r i Radio Group, U tre c h t, 197H5 Barrow and Achong, 1975; and Achong and Barrow, 1 9 7 5 ). Because o f th e m agnetic f i e l d , e le c tro m a g n e tic waves w ill be decomposed i n to two independent modes, and th e y p ro p a g a te in d e p e n d e n tly w ith d i f f e r e n t p h ase v e lo c i tie s . T hus, p h ase d if f e r e n c e w i l l be g e n e ra te d and a f t e r coming o u t o f m a g n e to -a ctiv e medium th e y w i l l be combined. Only th e p la n e o f p o l a r i z a t i o n w i l l be changed from th e o rig in a l. T his i s known as F arad ay r o t a t i o n and i s a func t i o n o f freq tien cy , e le c tr o n d e n s ity , and m agnetic f i e l d along th e p a th . S e v e ra l re s e a r c h e r s have e s tim a te d t h i s e ffe c t. Two modes w i l l p ro p a g a te in d e p e n d e n tly i f th e medium i s homogeneous b u t i n inhomogeneous magneto a c tiv e medium independence o f th e p ro p a g a tio n o f th e two c h a ra c te ris tic waves b re a k down. This w i l l cause two modes to couple t i g h t l y and t h e r e w i l l not be F araday ro ta tio n . D e ta ils o f node c o u p lin g have "been d is c u s s e d by Sudden (1 9 5 2 ), Cohen (1959)? Dodge (1972) and M elrose (1975). Group d e la y s e f f e c t s a re d is c u s s e d i n s e c tio n s 3 .2 .3 & 3 .3 . 1.1+ BMERGE!ICS, EMISSION PROCESSES AND MDDELS OF HOISE STORMS At m eter w avelength f lu x d e n s i ti e s o f s in g le b u rs ts were e s tim a te d from o b s e rv a tio n s (W ild, 1951, Hauge, 1956; F o k k er, 1960; de G root, 1966; and S te in b e rg e t a l . , 197^). O b se rv a tio n s show t h a t 5 x 10” Wm Hz” can be ta k e n as a t y p i c a l maximum i n t e n s i t y o f a storm b u r s t . Then, f o r t y p i c a l so u rce s i z e (v-» 5 x 10^ Km), energy d e n s ity o f th e e le c tro m a g n e tic wave and o f th e Langmuir wave (assum ing plasm a h y p o th e sis) and c o n v e rsio n e f f i c ie n c y f o r l - - > t o f th e o rd e r o f 10” ^ (W ild e t a l . , 1963) tu r n s ou t to be Eem = 10“ "^ erg cm” ^ and E j = 10” erg cm” 2. For t y p i c a l plasm a p a ra m e te rs i n th e co ro n a such as m agnetic f i e l d H = 3 .5 gauss (K ai, 1970), E le c tr o n density N = 10° cm"J and te m p e ra tu re T = 10° °K, m agnetic (E ) and th e rm a l E^.^ (nKT) e n e rg ie s a re Effl = 0 .5 erg cm” ° , E ^ = 0 . 1 erg cm“ ^. Thus energy i n th e b u r s t component i s q u ite sm a ll. So a ls o th e energy i n th e background continuum i s sm a ll as conpared w ith m agnetic and th e rm a l energy i n th e so u rce re g io n (E lg a ro y , 1977). - Thus, 5+2 - e v e n t h o u g h a n o i s e s t o r m is long d u r a t i o n p h e n o m e n o n , o n l y a f r a c t i o n of e n e r g y s t o r e d i n large c o r o n a l v o l u m e s i n the f o r m of m a g n e t i c and t h e r m a l e n e r g y is r e l e a s e d a n d is v e r y m u c h s m a l l c o m p a r e d t o a n y o t h e r e n e r g y r e s e r v i o r s i n t h e so l a r atmosphere. e n e r g e t i c s o f n o i s e storms O b viously, alone w i l l not l e a d to a ry t h e o r y b u t t h e o r i e s s h o u l d b e cons i s t e n t w i t h t he en e r g e t i c s o f t h e p r o c e s s e s involved. Theoretical interpretation of noise storms proce e d e d along t h e lines i n v o k i n g p l a s m a r a diation processes, of t h e o r d e r of 1 0 e i t h e r g y r o - s y n c h r o t r o n or since brightness temperatures to 10*^ ° K rules o ut t h e e m i s s i o n process due to thermal mechanisms. and K r use have Kiepenheuer ot_. .al* (1956) a n d F u n g a nd Y i p (19^6), (1966) p r o p o s e d g y r o - s y n c h r o t r o n r a d i a t i o n but t h e s e t h e o r i e s h a v e s e r i o u s l i m i tations. Denisse (I960) fi r s t p r o p o s e d a p l a s m a m e c h a n i s m to e x p l a i n the o r i g i n o f c o n t i n u u m radiation. (1963)? Trakfcengertz (1966), Takakura a n d V e r e s h k o v (197^) h a v e p r o p o s e d t h a t the A l f v e n waves and MHD w a v e s p r o p a g a t i n g along the c l o s e d m a g n e t i c f i e l d lines are r e s p o n s i b l e f o r a c c e l e r a t i o n o f e l e c t r o n s w h i c h give r i s e t o type I bursts. Because of the observed similarities between chains' o f t y p e I burs t s and t y p e III b ursts, Foraichev (1973) h a v e p r o p o s e d c o l l i s i o n l e s s Zaitsev and s h o c k wa v e s ■with a strong magnetic field ( (x)H source of type I bursts and chains. to be promising. ) as a possible This suggestion seems However, chains at 2nd harmonic have not been observed so far, as one would expect as a consequence of the above suggestion. Various models have been proposed to explain observational features of noise storms. Common to all models is magnetic loops or arches extending ip 1 - 2 R q in the solar corona and joining the active regions of opposite polarity. (Kai, 19705 Lantos and Jarry, 1970| McLean and Sheridan, 1972? Stewart and Labrum, 1972| Kai and Sheridan, 197^5 Kai and Nakajina, 197*+). Recently, Gergely and Kundu (197?) have given an empirical model showing association of centimetre and decimetre continuum and type I burst as shown in Fig. 1 A , They have shown possible position of decametric continuum radiation above the filament on the top of closed lines. "On-fringe1* bursts are generated some how from the same place. "Off-fringe" bursts are generated from the place where particles generated in chromospheric flares have direct access to open field lines. These aspects are discussed in more detail in Chapter V. - Mf- C o n tin u u m F i g . 1.if S a p i r i c a l m o d e l p o s i t i o n o f t y p e b u r s t i n I I I t h e o t h e r o f s t o r m + n o i s e t y p e t o g e t h e r r e g i o n s s t o r m r e g i o n ''on-fringe" v d t h ( G e r g a l y a n d n o i s e a n d i n d i c a t i n g ”o f f - f r i n g e w s t o r m K u n d u , a c t i v i t y 1 9 7 5 ) * - 1*5- 1 .5 MOTIVATION FOR THE PRESENT WORK Main r e s e a rc h a c t i v i t i e s o f th e S o la r and P la n e ta ry P h y sic s Area a t th e P h y s ic a l R esearch L ab o ra to ry (PRL) f o r th e l a s t few y e a rs a re d ir e c te d t o stu d y th e sun., i n te r p l a n e t a r y medium, m agnetosphere, io n o sp h e re , geomagnetism and cosmic r a y s . For b e t t e r u n d e rsta n d in g o f th e so ,la r t e r r e s t r i a l r e l a ti o n s h i p and i n o rd e r to keep t r a c k ,o f th e s o l a r a c t i v i t y on d a y -to -d a y b a s i s , fo llo w in g ex p erim ents a re conducted i n a d d itio n t o th e High R eso lu t io n S p ectro sco p e a t 35 MHz (C h ap ter I I ) . 1) Wide band s o l a r ra d io sp e ctro sc o p e (h0-2l+0 MHz, A f = 300 kHz, & t = 0 .5 s) (B honsle and A lu rk a r, 1968) which i s m o d ified i n 1977 by th e a u th o r to o p e ra te i n th e ran g e o f 25 - 75 MHz, w ith L f = 60 kHz, t ,t 2) s: 0 ,1 S . S o la r microwave ra d io m e te r 2 .8 GHz w ith an accu racy o f f l u x measurement +, 7>% (N arayanan and B honsle, 19715 Sawant e t al . , 197*+). 3) Two elem ent phased sw itch ed in te r f e r o m e te r a t 60 MHz and a ra d io p o la rim e te r a t bo MHz cap ab le o f re c o rd in g a l l S to k e s ' p a ra m eters- (o p e ra te d as su p p o rtin g eq u ip m en ts). I n a d d itio n , h ig h r e s o l u ti o n o p t i c a l o b s e rv a tio n s a t V ed h sh ala’s Udaipur S o la r O b serv ato ry and th e ra d io - If6 - o b s e r v a t i o n s at P R L are b e i n g c o o r d i n a t e d ( B h a t n a g a r et a l . } 1977). W i t h t h e h e l p o f above inst r u m e n t s , studies i n r e s p e c t of variety of (a) p h y s i c s of s o l a r f l a r e s and s o l a r terrestrial relationships (Bhonsle et a l . , 1973) (b) rad i o b u r s t p h e n o m e n o n and t h e i r i n t e r p r e t a t i o n i n t e r m s of plasma parameters and s h o c k w a v e s i n t h e s o l a r a t m o s p h e r e (Bhonsle et a l . , 1973* 1976; & S a w a n t et a l . , 1975» 1976), 1 0 ^ radians) i n (e)' m e a s u r e m e n t o f F a r a d a y r o t a t i o n t h e m a g n e t o - i o n i c m e d i u m b e t w e e n th e s u n an d the e a r t h ( B h onsle a n d Mattoo, 197*+) h a v e b e e n c a r r i e d out. T h e s o l a r radio a s t r o n o m y o b s e r v a t o r y o f P E L is s i t u a t e d at S p a c e A p p l i c a t i o n s Center, Research Organization, development, A h medabad. I n d i a n Sp a c e Be s i d e s t h e design, f a b r i c a t i o n and i n s t a l l a t i o n o f t h e H i g h R e s o l u t i o n Sp e c t r o s c o p e , the author ha d overall respons i b i l i t y o f c o o r d i n a t i o n and d a y to d a y o p e r a t i o n o f t he obser v a t o r y , Mattoo and Bhonsle (197^) f o u n d t h a t the time p r o f i l e s o f c e r t a i n short d u r a t i o n b u rsts observed o n two closely spaced frequencies h k H z n e a r 35 MHz (3M97 (type I l l b ) ? separated by MH z and 3 ^ . 9 9 3 MHz) were d is similar, i n l y i n g t h e e x i s t e n c e of fine s t r u c t u r e i n frequency. I n o r d e r to i n v e s t i g a t e t h i s p o i n t further, as it w a s n e c e s s a r y t o aeid.se a c o n t i n u o u s f r e q u e n c y s c a n ning t y p e o f s p e c t r o s c o p e w i t h f r e q u e n c y and t i m e r e s o l u t i o n o f 5 k H z and 10 m s r e s p e c t i v e l y . This was acconplished b y t h e a u t h o r i n t h e f o r m of H i g h R e s o l u t i o n S p e c t r o s c o p e w h i c h y i e l d e d n e w i n f o r m a t i o n o n the m i c r o s t r u c t u r e s i n decametric bursts and n o i s e s t o r m p h e n o m e n a . I T h e a u t h o r ’s f i n d i n g s of th e i n t r i g u i n g p h e n o m e n a of decametric bursts and no i s e storms a n d t h e i r i n t e r p r e t ations i n t e r m s o f p h y s i c a l p r o c e s s e s a re p r e s e n t e d i n t h i s thesis.
© Copyright 2025 Paperzz