CHAPTER 23 MIRRORS AND LENSES 35. −4.5 cm R f= 2 = = −2.25 cm (convex surface), 2 M = + 12 (virtual image). do di = − Mdo = − 2 . 1 1 1 1 1 1 − − = + = = f do di do do/2 do , So 54. (a) di = ) do = − f = 2.3 cm . do f (15 cm)(22 cm) = = −47 cm . do − f 15 cm − 22 cm −47.1 cm di M = − d = − 15 cm = +3.14. o So hi = Mho = +3.14 (4.0 cm) = 13 cm‚ virtual and upright . (b) di = So 55. (36 cm)(22 cm) = 57 cm . 36 cm − 22 cm hi = −1.57 (4.0 cm) = −6.3 cm = 6.3 cm‚ real and inverted . (a) f = −18.0 cm, di = 56.6 cm M = − 36 cm = −1.57. do = 10 cm. do f (10 cm)(−18.0 cm) = = −6.4 cm . 10 cm − (−18.0 cm) do − f −6.43 cm di M = − d = − 10 cm = o 0.64‚ virtual and upright . (b) di = M=− (25 cm)(−18.0 cm) = −10.5 cm . 25 cm − (−18.0 cm) −10.5 cm 25 cm = 0.42‚ virtual and upright . 56. For a diverging lens, the focal length is negative. di = − do |f| do f = d + |f| < 0, so the image is always virtual. o do − f − |f| di |f| M = − d = − d + |f| = d + |f| < 1, since do + |f| > |f|. o o o Therefore 0 < M < 1, i.e., the image is upright and reduced. 57. M = −2.0 (real). (a) f = 12 cm, di = − Mdo = 2.0do. 1 1 1 1 1 3 f = do + di = do + 2.0do = 2do , (b) M = +2.0 (virtual). 3 3 do = 2 f = 2 (12 cm) = 18 cm . di = − Mdo = −2.0do. 1 1 1 1 = + = f do 2do , −2.0do 58. ) ) 1 1 do = 2 f = 2 (12 cm) = 6.0 cm . 1 1 1 1 1 (a) f = d + d = 6.0 cm + 400 cm = 0.169 m-1, o i ) f = 5.9 cm . 400 cm di (b) M = − d = − 6.0 cm = −66.7. o So hi = Mho = −66.7 (1.0 cm) = −66.7 cm = 67 cm‚ inverted . 59. do = 4.0 m, −35 mm hi M= h = = −0.0206 (inverted). 1.7 × 103 mm o di = − Mdo = 0.0206 (4.0 m) = 0.0824 m. 1 1 1 1 1 −1 = + = + f do di 4.0 m 0.0824 m = 12.4 m , 64. do = 3.0 cm, M = +3.5 (virtual image). ) di = − Mdo = −3.5 (3.0 cm) = −10.5 cm. 1 1 1 1 1 = + = + = 0.238 cm−1, f do di 3.0 cm −10.5 cm 65. (a) do = 30 cm, (b) di = f = −45 cm. di = (30 cm)(45 cm) = −90 cm . 30 cm − 45 cm CHAPTER 25 f = 0.081 m = 8.1 cm . ) f = 4.2 cm . do f (30 cm)(−45 cm) = = −18 cm . 30 cm − (−45 cm) do − f OPTICAL INSTRUMENTS 5. The pre-flash occurs before the aperture is open and the film exposed. The bright light causes the iris to reduce down (giving a small pupil) so that when the second flash comes momentarily, you don’t have a wide opening through which you get the red-eye reflection from the retina. 10. (a) Nearsighted . (b) do = ∞, di = −12.5 m (image on object side). 1 1 1 1 1 P= f = d + d = + –12.5 m = −0.080 D‚ diverging . ∞ o i 11. do = ∞, di = −200 cm = −2.00 m (image on object side). 1 1 1 1 1 P= f = d + d = + = −0.50 D‚ diverging . ∞ −2.00 m o i 13. (a) do = 25 cm = 0.25 m, di = −100 cm = −1.0 m (image on object side). 1 1 1 1 1 P = f = d + d = 0.25 cm + = +3.0 D . −1.0 m o i 1 1 1 1 (b) d = f − d = 3.0 D − = 3.0 D, ∞ i o ) 1 di = 3.0 D = 0.33 m = 33 cm. This image is way behind the retina and so she has to take them out . 15. do = 25 cm = 0.25 m, di = −1.5 m (image on object side). 1 1 1 1 1 P = f = d + d = 0.25 m + = +3.3 D. −1.5 m o i (a) Converging . (b) P = +3.3 D . 16. (a) do = ∞, di = −150 cm = −1.50 m (image on object side). 1 1 1 1 1 P= f = d + d = + = −0.67 D . ∞ −1.50 m o i 1 1 1 1 (b) d = f − d = −0.667 D − 0.25 m = −4.67 D, i o ) di = −0.21 m < − 0.25 m. Therefore the answer is yes and the near point is 21 cm . (c) 30–40 years old from Table 25.1. 17. First find his new near point. do = 33 cm = 0.33 m, 1 1 1 1 − − − = = +2.0 D f do 0.33 m = 1.0 D, di ) 1 P = f = +2.0 D. di = −1.0 m. So the near point is 1.0 m. To bring this near point to 25 cm, the power of the new lenses must be 1 1 1 P' = f' = 0.25 m + = +3.0 D . −1.0 m 18. Top: do = ∞, di = −500 cm = −5.0 m (image on object side). 1 1 1 1 1 P= f = d + d = + = −0.20 D . ∞ −5.0 m o i Bottom: do = 25 cm = 0.25 m, 1 1 P = 0.25 m + = +2.6 D . −0.70 m di = −70 cm = −0.70 m (image on object side).
© Copyright 2026 Paperzz