8.3 Factoring trinomials in the form 2 Ax + Bx + Bx + C +C Where A does not equal 1 Where A does not equal 1 click here for 6/page to print Look at the coefficients of the outer terms: A and C in standard form • • • • 3x2 + 14x + 8 Multiply them together Multiply them together 3∙8=24 Now find factors of 24 1∙24, 1 24, 2 2 ∙12, 12, 3 3 ∙8, 8, 4 4 ∙6 6 • Again, find the pair that adds up to B, the coefficient of the middle term 14: 2 ffi i t f th iddl t 14 2 and 12 d 12 3x2 + 14x + 14x + 8 +8 Multiply outer coefficients together (A∙C) Find the pair that adds up to 14: (B) Find the pair that adds up to 14: (B) 2 and 12 Rewrite the expression using 2x and 12x instead of 14x • 3x2 + 12x + 2x + 8 • Break into two groups of sums • • • • 3x2 + 12x + 12x + 2x + 2x + 8 +8 • (3x2 + 12x) + (2x + 8) • Notice it is two sums that are ADDED! Notice it is two sums that are ADDED! not multiplied!! • Factor each group separately h l • 3x(x+4)+2(x+4) ( ) ( ) • Notice each group has the same binomial in ( ) 3x(x+4)+2(x+4) • • • • • • • Notice each group has the same binomial in ( ) Pretend (x+4) is ☺ 3x☺+2☺ Pretend (x+4) is ☺ Can you factor out the ‘☺’? Of course: ☺(3x+2) Now put the (x+4) in for ☺ Now put the (x+4) in for ☺ (x+4)(3x+2) Check with calculator to 3x2 + 14x + 8 2x2 —3x 3x — 9 Multiply A∙C: 2∙(—9)=—18 Factor pairs: Factor pairs: —1∙18, —2∙9, —3∙6, —6∙3 , —9∙2, , —18∙1 Which pair sums to —3? Rewrite original with this sum for the middle Rewrite original with this sum for the middle term • 2x2 —6x + 3x — 9 • • • • • 2x2 —6x 6x + 3x + 3x — 9 • • • • • • • Split into groups (2x2 — 6x) + (3x 6x) + (3x — 9) Factor each group 2x (x — 3) + 3(x — 3) Factor out the matching binomial of each group Factor out the matching binomial of each group (x — 3)(2x + 3) check 15x4 — 39x3 +18x2 • • • • • • • Always, ALWAYS!! check for common factors 3x2 (5x2 — 13x + 6) + 6) Now use the method on the ( ) part A ∙ C is 5 ∙ 6 = 30 Factors of 30: 1∙30 Factors of 30: 1 30, 2 2∙15 15, 3 3∙10 10, 5 5∙6 6 Which adds to B (—13)? 3 and 10, but they both are negative 3x2 (5x2 — 13x + 6) + 6) • —3 and —10 are the factor pair of A∙C with sum of B • Rewrite expression with those as coefficients of x of x • 3x2 [5x2 — 10x — 3x + 6] • Break into groups 3x2 [(5x2—10x)+(—3x+6)] • Factor each group F t h 3 2 [5x(x—2)+(—3)(x—2)] 3x [5 ( 2)+( 3)( 2)] 3x2 [5x(x—2)+(—3)(x—2)] [5x(x 2)+( 3)(x 2)] • Bring out the binomial factor (x—2) • 3x2 (x (x—2)(5x—3) 2)(5x 3) • Check against 15x4 — 39x3 +18x2 with table 6x2—19x+8 19x+8 • • • • • • • 6∙8=48 1∙48, 1 48, 2 2∙24, 24, 3 3∙16, 16, 4 4∙12, 12, 6 6∙8 8 3 and 16 sum to 19, and since 19 is negative 6x2—3x—16x+8 (6x2 — 3x) + ( 3x) + (—16x 16x + 8) + 8) 3x(x—1)+(—8)(x—1) (x—1)(3x—8) check it with table on calculator 10x2+19xy+6y2 • Two variables: not much harder. Just remember to include y with last terms y • Common factors? • A∙C=10∙6=60 A C 10 6 60 • 1∙60, 2∙30, 3∙20, 4∙15, 5∙12, 6∙10 , , , , , • 4+15=19 • 10x2+15xy+4xy+6y2 10x2+15xy+4xy+6y2 • (10x2+15xy)+(4xy+6y2) • Since there is that pesky y, remember to Since there is that pesky y, remember to factor it out…or leave it in, as needed • 5x(2x+3y)+2y(2x+3y) (2 3 ) 2 (2 3 ) • (2x+3y)(5x+2y) ( y)( y) • The second variable should not be an issue! 6x3y2+26x2y3+24xy4 • • • • • • • If it says ‘Factor Completely’, look carefully Common Factors: 2xy2 Common Factors: 2xy 2xy2(3x2+13xy+12y2) Done? Not yet… 3 12=36 3∙12=36 Factors: 1∙36, 2∙18, 3∙12, 4∙9 4+9=13, rewrite ( ) with 4 and 9 2xy2(3x2+13xy+12y2) • • • • • • • • 2xy2(3x 2 (3 2+9xy+4xy+12y 9 2 2) Break into groups and factor 2xy2[(3x2+9xy)+(4xy+12y2)] 2xy2[3x(x+3y)+4y(x+3y)] Factor out matching binomial 2 2 (x+3y)(3x+4y) 2xy ( +3 )(3 +4 ) calculator check is not definitive for 2 variables check by multiplying: – first by FOIL, (x+3y)(3x+4y) then distribute 2xy2 6x2—7x+2 7x+2 • • • • • • • • • A∙C A C = 6∙2 = 12 6 2 12 Factors: 1∙12, 6∙2 , 3∙4 3+4=7, and since —7 is in expression Use —3 and —4 6x2—3x—4x+2 Group: (6x2—3x)+(—4x+2) Factor each group 3x(2x—1)+(—2)(2x—1) Factor out (2x—1)(3x—2) ( )( ) Check with table in calculator 20x4 — 40x3 — 25x2 • • • • • • Common factor first: 5x2 5x2 (4x2—8x—5) 8x 5) Now: A∙C = —20, find factor pairs —1∙20, —2∙10, —4∙5, —5∙4, —10∙2, —20∙1 Which pair do we want? —10 Which pair do we want? 10 + 2 = + 2 = —8 8 Rewrite: 5x2 (4x2 + 2x — 10x — 5) 5x2 (4x2 + 2x + 2x — 10x — 5) • • • • Group: 5x2 [(4x2 + 2x) + (—10x — 5)] Factor groups: 5x2 [2x(2x + 1) Factor groups: 5x + 1) + ( + (—5)(2x 5)(2x + 1)] + 1)] Factor out binomial: 5x2 (2x + 1)(2x — 5) Check with table in calculator
© Copyright 2026 Paperzz