Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php Received 11/02/17 Magic Squares with Perfect Square Number Sums Inder J. Taneja(1) Abstract This short paper shows how to create magic squares in such a way that total sum of their numbers becomes a perfect square. This has been done in two ways: Firstly, Take the sum of odd numbers, and secondly, take the numbers in a sequential way. In the first case, for all orders of magic squares, one can always have a perfect square sum. In the second case, magic squares with perfect square magic sums exist, but only for odd order magic squares. For the even order magic squares, such as 4, 6, 8, etc. it is not possible to write sequential number magic squares with perfect square sums. For the odd order magic squares, at least three examples of sequential numbers are given in each case. This is done from the 3rd to the 25th orders of magic squares. For the prime number orders, examples are considered up to order 11. Further results for order 13, 17, etc. are presented along similar lines. Finally, we reach a conclusion that we can always create a magic square, so that, if the order of magic square is k, then the number of elements are k2, the magic sum is k3, and the sum of all numbers on the square is k4, for all k=3,4,5,… An equation means nothing to me unless it expresses a thought of God. - S. Ramanujan. ______________________ (1) Formerly, Professor of Mathematics, Universidade Federal de Santa Catarina, 88.040-900 Florianópolis, SC, Brazil. E-mail: [email protected]; Twitter: @IJTANEJA; Web-site: https://numbersmagic.wordpress.com RGMIA Res. Rep. Coll. 20 (2017), Art. 11, 34 pp. 1 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 1. Introduction Recently, William Walkington started an interesting discussion as to how to create magic squares with cells that had the same areas as their numbers. Below is a graphic design for a 2017 seasonal greetings card, showing a magic square with approximate areas that was constructed by William Walkington (2016): Figure 1 Lee Sallows (2017) also constructed another magic square representing the areas as rectangles. See below: Figure 2 The sum of all the numbers is given by 2 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 1 2 3 4 5 6 7 8 9 45 . (1) The number 45 is not a perfect square. If we make a slight change, then we can transform the sum into a perfect square: 5 6 7 8 9 10 11 12 13 81 92 (2) Using this number sequence, Walter Trump (2017) was able to construct the following area magic square: Figure 3 Adding 4 to each number in (1), we obtain the numbers in (3). Observing area-wise the figures 1 and 3, there is a considerable difference: For example, from numbers 1 to 2, the cell area is doubled, while from numbers 5 to 6, there is proportionally less increase between the cell areas. According to Lee Sallows’s approach, the area-wise magic square for equation (2) is as follows: Lee Sallows-Style Figure 4 3 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php In order to construct a magic square with cell areas that are in proportion to their numbers it is not necessary that the numbers always sum to a perfect square. Below is another example constructed by William Walkington (2017) with sequential numbers from 3 to 11: Figure 5 We observe that in Figures 1, 3 and 5, the number cell areas are proportional and aligned in both directions. In Figures 2 and 4, the proportionality of the areas is only present in one direction, which is horizontal. In figure 4 we cannot have proportionality in both directions, because the magic square sum is S33 : 27 , whilst the sum of numbers is 81 27 3 (and not 27 27 ). Below are two examples of classical order 4 magic squares with cell areas that are proportional to their numbers: Figure 7 Figure 6 4 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php More examples of similar kinds of order 4 area magic squares, together with order 6 area magic squares, can be seen in William Walkington’s pages [8]. From equation (2), the question arises, how to create higher order magic squares such that the sum of numbers are always a perfect square. Based on this idea, in this paper we establish some formulas, so that sum of the numbers in magic squares always becomes a perfect square. 2. Series and Magic Square Sums This section brings some basic idea of series and magic square sums. 2.1 Sum of Natural Numbers Series It is well-known that the positive natural number series sum is given by T(n) := 1 + 2 + 3 + ... + n = n(n + 1) , n 1. 2 (3) The sequence T(n) , is also famous Pascal’s triangle values. 2.2 Sum of Odd Numbers Series It is well-known that sum of odd-number series is given by Fn := 1+ 3 + 5 + ... +(2n 1) = n2 , n 1. (4) Since we are working with magic squares, let us write, n = k 2 , then we have Fk2 := 1+ 3 + 5 + ... + (2k 2 1) = k 4 , k 1. (5) The number k is the order of a magic square. Thus for all k 3 , we can always have a odd numbers magic square with sum of all numbers a perfect square. 2.3 Sequential Perfect Square Sum Below is a general formula to write sequential magic squares. Let us consider k -1 K := T(n) - T(n - k) = k n , n > k . 2 5 (6) Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php a) For even order magic squares, k 2 p : 2p 1 K := k n . 2 (7) 2 p 1 is never a natural number. Thus, there is no sequential 2 magic square with sum of numbers as a perfect square for even order magic squares. In this case, the expression n b) For odd order magic squares, k 2 p 1 : 2p +1 1 K := T(n) - T(n - k) := k n = k n p . 2 (8) In this case we can always find a natural number, such that n p a perfect square with n p k . The minimum value is n p k . This gives K := k 2 and the sum of all numbers is Fk 2 := k 4 . 2.4 Magic Square Sum and Sum of Numbers It is well known that magic sum of a magic square of order k has total elements, 1, 2, 3, ..., k 2 is given by k k 2 + 1 . (9) Sk×k := 2 Sum of all members is given by Fk 2 := k 2 k 2 + 1 2 . (10) Thus, from (5) and (8), we conclude that at least there are two ways of writing magic squares with sum of all members a perfect square: (i) Magic squares formed by odd order numbers; (ii) For magic square of odd orders, such as, 3, 5, 7,…, one can always find sequential numbers such that the sum of all numbers is a perfect square. Based on this idea, sections below give examples magic squares with numbers sum a perfect square. 6 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 3. Magic Square of Order 3 According to (5) and (8), one can have a perfect square sum magic square of order 3 in two ways. One using odd order numbers and secondly having sequential values. Below are examples of both types. 3.1 First Approach – Odd Numbers Take k 3 in (5), we get 1 3 5 ... (2 32 1) 34 , 1 + 3 + 5 + 7 + 9 +11 +13 +15 +17 = 92 = 81. (11) According to numbers given in (11), the magic square of order 3 is given by 27 3 13 11 27 17 9 1 27 7 5 15 27 27 27 27 27 Example 1 3.2 Second Approach – Sequential According to (8), K : n(n 1) (n 9)(n 8) 9(n 4) . 2 2 Take n 13 , we get a perfect square, i.e., K : T (13) T (4) 13 14 4 5 9 9 81 . 2 2 Simplifying, one get 5 + 6 + 7 + 8 + 9 +10 +11+12 +13 = 81. (12) Again, there is a perfect square for the magic square of order 3 Take the nine numbers in a sequence from 5 to 13. In this case the magic square of order 3 is given by 27 6 11 10 27 13 9 5 27 8 7 12 27 27 27 27 27 Example 2 In both the examples given above the magic sum is S3×3 := 27 = 33 and sum of all numbers is F9 := 81 = 34 . 7 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php We observe that the minimum number bigger than 9, and giving n 4 as a perfect square is n 13 . Thus we can say that the sum of numbers starting from 5 to 13 is a perfect square sum with least possible value. Still, there are more sequences with the same property. See examples below: T(20) T(11) = 12 + 13 + ... + 20 = 144 = 122 ; T(29) T(20) = 21 + 22 + ... + 29 = 225 15 2 ; T(40) T(31) = 32 + 33 + ... + 40 = 324 18 2 . 4. Magic Square of Order 4 According to (8), we don’t have sequential magic square with number sum a perfect square. We will obtain only odd numbers magic square of order 4. Take k 4 in (5), we get 1 3 5 ... (2 42 1) 44 . 1 + 3 + 5 + 7 + 9 +11 +13 +15 +17 + +19 + 21 + 23 + 25 + 27 + 29 + 31 = 256 = 162. (13) According to values given in (13), the pan diagonal magic square of order 4 is given by 64 64 64 64 64 64 64 13 23 1 27 3 25 15 21 31 5 19 9 17 11 29 7 64 64 64 64 Example 3 64 64 64 64 64 64 In this case, the magic sum is S4×4 := 64 = 43 , and sum of numbers is F16 := 256 = 162 = 44 . 5. Magic Square of Order 5 According to (5) and (8), one can have a perfect square sum magic square of order 5 in two ways. One using odd order numbers and secondly having sequential values. Below are examples of both type. 5.1 First Approach – Odd Numbers Take k 5 in (5), we get 1 3 5 ... (2 52 1) 54 . 1 + 3 + 5 + 7 + 9 +11 +13 +15 +17 +19 + 21 + 23 + 25 + +27 + 29 + 31 + 33 + 35 + 37 + 39 + 41 + 43 + 45 + 47 + 49 = 25 2 = 625. 8 (14) Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php According to 25 values given in (14), the pan diagonal magic square of order 5 is given by 125 125 125 125 5.2 125 125 125 125 125 1 17 23 39 45 125 33 49 5 11 27 125 15 21 37 43 9 125 47 3 19 25 31 125 29 35 41 7 13 125 125 125 125 125 125 125 Example 4 Second Approach – Sequential According to (8), K : n(n 1) (n 25)(n 24) 25(n 12) . 2 2 Take, n 37 , we get a perfect square, i.e., 37 38 12 13 37 19 6 13 2 2 703 78 625 252 54. K : T (37) T (12) Simplifying, one get 13 + 14 + ... + 37 = 54 = 252 = 625 . (15) This gives a perfect square sum for 25 numbers in a sequential way from 13 to 37. In this case the pan diagonal magic square of order 5 is given by 125 125 125 125 125 125 125 125 125 13 21 24 32 35 125 29 37 15 18 26 125 20 23 31 34 17 125 36 14 22 25 28 125 27 30 33 16 19 125 125 125 125 125 125 125 Example 5 In both the examples given above the magic sum is S5×5 := 125 = 53 and sum of all numbers is F25 := 625 = 252 = 54 . Above magic square is for minimal number of sequential values. Still, there are more possibilities of getting sequential numbers for the magic square of order 5, where magic sum is a perfect square. See below more examples, T(48) T(23) = 24 + 25 + ... + 48 = 900 = 302 ; T(61) T(36) = 37 + 38 + ... + 61 = 1225 = 352 ; T(76) T(51) = 52 + 53 + ... + 76 = 1600 = 40 2 9 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 6. Magic Square of Order 6 According to (7) we don’t have sequential magic square with number sum a perfect square. We will obtain only odd numbers magic square of order 6. Take k 6 in (5), we get 1 3 5 ... (2 62 1) 64 1 + 3 + 5 + 7 + ... + 67 + 69 + 71 = 36 2 = 1296. (16) Thus, there is a perfect square sum for the magic square of order 6 of odd numbers. According to values given in (16), the magic square of order 6 is given by 1 45 55 67 33 15 57 13 69 27 41 9 23 11 25 53 61 43 63 31 7 47 19 49 37 65 21 5 59 29 35 51 39 17 3 71 216 216 216 216 216 216 Example 6 216 216 216 216 216 216 216 216 In this case, the magic sum is S6×6 := 216 = 63 , and sum of number is F36 := 1296 = 362 = 64 . 7. Magic Square of Order 7 According to (5) and (8), one can have a perfect square sum magic square of order 7 in two ways. One using odd order numbers and secondly having sequential values. Below are examples of both type. 7.1 First Approach – Odd Numbers Take k 7 in (5), we get 1 3 5 ... (2 7 2 1) 7 4 , 1 + 3 + 5 + 7 + ... + 93 + 95 + 97 = 49 2 = 2401. According to values given in (17), a pan diagonal magic square of order 7 is given by 343 343 343 343 343 343 1 79 45 25 89 69 35 343 343 17 95 61 41 7 71 51 343 343 33 13 77 43 23 87 67 343 343 49 15 93 59 39 5 83 343 343 65 31 11 75 55 21 85 343 343 81 47 27 91 57 37 3 343 343 97 63 29 9 73 53 19 343 343 343 343 343 343 343 343 343 343 Example 7 In this case, the magic sum is S7×7 := 343 = 73 , and sum of all number is F49 := 2401 = 74 . 10 (17) Inder J. Taneja 7.2 RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php Second Approach – Sequential According to (8), K : n(n 1) (n 49)(n 48) 49 n 24 2 2 Take n 73 , we get a perfect square sum, i.e., 73 74 24 25 73 37 12 25 2 2 2701 300 2401 492 7 4. K : T (73) T (24) Simplifying, one get 25 + 26 + ... + 72 + 73 = 74 = 492 = 2401 . (18) This gives a perfect square sum for 49 values put in a sequence starting from 25. According to values given in (18), a pan diagonal magic square of order 7 is given by 343 343 343 343 343 343 343 343 343 343 343 343 25 33 41 49 57 65 73 64 72 31 32 40 48 56 47 55 63 71 30 38 39 37 45 46 54 62 70 29 69 28 36 44 52 53 61 59 60 68 27 35 43 51 42 50 58 66 67 26 34 343 343 343 343 343 343 343 Example 8 343 343 343 343 343 343 343 343 343 Still, there are more possibilities of getting sequential numbers magic square of order 7 with perfect square sum. See below examples, T(88) T(39) = 40 + 41 + ... + 88 = 3136 = 56 2 ; T(105) T(56) = 57 + 88 + ... + 105 = 3969 = 63 2 ; T(124) T(79) = 80 + 81 + ... + 124 = 4900 = 70 2 . In this case, also the magic sum is S 7×7 := 343 , and sum of number is F49 := 2401 = 492 = 74 . 8. Magic Square of Order 8 According to (7) we don’t have sequential magic square with number sum a perfect square. We will obtain only odd numbers magic square of order 8. Take k 8 in (5), we get 1 3 5 ... (2 82 1) 84 1 + 3 + 5 + 7 + ... + 123 + 125 + 127 = 642 = 4096. 11 (19) Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php According to values given in (19), the magic square of order 8 is given by 512 512 512 512 512 512 512 512 512 512 512 512 512 31 81 71 9 53 123 51 125 107 37 25 87 1 79 89 23 43 101 45 99 117 59 7 73 75 5 19 93 97 47 103 41 63 113 77 3 85 27 13 67 127 49 121 55 33 111 83 29 512 512 512 512 512 512 Example 9 512 109 65 115 95 57 21 39 11 512 512 35 15 61 17 119 91 105 69 512 512 512 512 512 512 512 512 512 512 512 In this case the magic sum is S 8×8 := 512 , and sum of number is F64 := 4096 = 642 84 . The above magic square is also a bimagic with bimagic sum Sb 8×8 := 43688 . 9. Magic Square of Order 9 According to (5) and (8), one can have a perfect square sum magic squares of order 9 in two ways. One, using odd order numbers, and second with sequential values. 9.1 First Approach – Odd Numbers Take k 9 in (5), we get 1 3 5 ... (2 92 1) 94 , 1 + 3 + 5 + 7 + ... + 157 + 159 + 161 = 812 = 6561. (20) According to values given in (20), the magic square of order 9 is given by 1 65 123 53 93 151 27 85 131 729 35 75 133 9 67 113 37 101 159 729 45 103 149 19 83 141 17 57 115 729 69 109 11 97 161 39 77 135 31 729 79 95 119 143 153 15 21 49 55 59 87 147 117 127 43 13 29 107 105 61 139 145 125 23 47 3 81 729 729 729 Example 10 129 25 89 121 5 63 155 51 91 729 157 41 99 137 33 73 111 7 71 729 729 729 729 729 729 729 729 729 729 729 729 In this case the magic sum is S9×9 := 729 = 93 , and sum of numbers is F81 := 6561 = 812 = 94 . It is also a bimagic square with bimagic sum is Sb 9×9 := 78729 . 12 Inder J. Taneja 9.2 RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php Second Approach – Sequential According to (8), K : T (n) T (n 81), i.e., K : n 81 , n(n 1) (n 81)(n 80) 81n 3240 81 n 40 . 2 2 Take n 121 , we get a perfect square, i.e., 121122 40 41 2 2 121 61 20 41 K : T (121) T (40) 7381 820 6561 812 94. Simplifying, one get 41 + 42 + ... + 120 + 121 = 94 = 812 = 6561 . (21) Thus, we have a perfect square sum for the 81 numbers starting from 41. According to values given in (21), the magic square of order 9 is given by 41 58 63 75 80 88 100 73 78 92 95 112 117 48 102 107 115 46 51 65 68 67 45 50 89 70 84 114 87 74 82 121 99 104 62 116 97 111 60 47 55 94 54 59 49 79 93 71 110 83 91 69 108 113 103 52 106 120 98 56 64 42 81 729 729 729 729 729 729 729 Example 11 729 105 119 729 53 61 729 85 90 729 101 109 729 43 57 729 72 77 729 118 96 729 66 44 729 86 76 729 729 729 729 In this case also the magic sum is S9×9 := 729 93 , and sum of number is F81 := 6561 = 812 = 94 . This magic square is also a bimagic with bimagic sum is Sb 9×9 := 63969 . Still, there are more possibilities of getting sequential numbers magic squares of order 9, where numbers sum is a perfect square. See below examples, T(140) T(59) = 60 + 61 + ... + 140 = 8100 = 90 2 ; T(161) T(81) = 82 + 88 + ... + 161 = 9801 = 99 2 ; T(184) T(103) = 104 + 105 + ... + 184 = 11644 = 108 2 . 13 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 10. Magic Square of Order 10 According to (8) we don’t have sequential magic square with number sum a perfect square. We will obtain only odd numbers magic square of order 10. Take n 100 in (5) or k 10 in (6), we get 1 3 5 ... (2 10 2 1) 10 4 1 + 3 + 5 + 7 + ... + 197 + 198 + 199 = 100 2 = 10000. (22) According to values given in (22), the magic square of order 10 is given by 1 97 31 183 175 47 149 73 119 125 71 23 135 165 59 197 81 107 9 153 123 115 45 99 191 13 77 161 147 29 39 173 109 67 141 85 195 3 131 57 187 41 17 113 89 143 171 139 25 75 169 127 61 157 33 111 19 185 55 83 95 5 159 51 103 69 133 37 181 167 53 189 87 21 137 179 105 155 63 11 145 79 193 129 7 35 43 91 177 101 117 151 163 15 65 121 27 49 93 199 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 Example 12 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 In this case the magic sum is S10×10 := 1000 = 103 , and sum of numbers is F100 := 10000 = 1002 = 104 . 11. Magic Square of Order 11 According to (5) and (8), one can have a perfect square sum magic square of order 11 in two ways. One, using odd order numbers, and second with sequential values. 11.1 First Approach – Odd Numbers Take k 11 in (5), we get 1 3 5 ... (2 112 1) 114 , 1 + 3 + 5 + 7 + ... + 239 + 241 = 1212 = 14641. According to values given in (23), the magic square of order 11 is given by 14 (23) Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1 41 59 77 95 113 153 171 189 207 225 201 241 17 35 53 71 89 129 147 165 183 159 177 217 235 11 29 47 87 105 123 141 117 135 175 193 211 229 5 23 63 81 99 75 93 111 151 169 187 205 223 21 39 57 33 51 69 109 127 145 163 181 199 239 15 233 9 27 45 85 103 121 139 157 197 215 191 209 227 3 43 61 79 97 115 133 173 149 167 185 203 221 19 37 55 73 91 131 107 125 143 161 179 219 237 13 31 49 67 65 83 101 119 137 155 195 213 231 7 25 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 Example 13 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 In this case the magic sum is S11×11 := 1331 = 113 , and sum of numbers is F121 := 14641 = 1212 = 114 . In this case the magic square is pan diagonal. 11.2 Second Approach – Sequential According to (8), we have K : T (n) T (n 121), i.e., K : n 121 , n(n 1) (n 121)(n 120) 121n 7260 121 n 60 . 2 2 Take n 181 , we get a perfect square sum, i.e., 181182 60 61 2 2 181 91 30 61 K : T (181) T (60) 16471 1830 14641 1212 114. Simplifying, 61 + 62 + ... + 180 + 181 = 114 = 1212 = 14641 . (24) Thus, we have a perfect square sum for the 121 numbers starting from 61. According to values given in (24), the magic square of order 11 is given by 15 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 61 81 90 99 108 117 137 146 155 164 173 161 181 69 78 87 96 105 125 134 143 152 140 149 169 178 66 75 84 104 113 122 131 119 128 148 157 166 175 63 72 92 101 110 98 107 116 136 145 154 163 172 71 80 89 77 86 95 115 124 133 142 151 160 180 68 177 65 74 83 103 112 121 130 139 159 168 156 165 174 62 82 91 100 109 118 127 147 135 144 153 162 171 70 79 88 97 106 126 114 123 132 141 150 170 179 67 76 85 94 93 102 111 120 129 138 158 167 176 64 73 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 Example 14 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 1331 In both the examples 13 and 14, the magic sum is S11×11 := 1331 = 113 , and the sum of numbers is F121 := 14641 = 1212 = 114 . Still, there are more possibilities of getting sequential number magic squares for the magic square of order 11, where the numbers sum is a perfect square. See below examples, T(204) T(83) = 84 + 85 + ... + 204 = 17424 = 132 2 ; T(229) T(108) = 109 + 110 + ... + 229 = 20449 = 143 2 ; T(256) T(135) = 136 + 137 + ... + 256 = 23716 = 154 2 . 12. Magic Square of Order 12 According to (8) we don’t have sequential magic square with number sum a perfect square. We will obtain only odd numbers magic square of order 12. Take k 12 in (5), we get 1 3 5 ... (2 12 2 1) 12 4 1 + 3 + 5 + ... + 285 + 287 = 124 = 20736 . (25) According to values given in (25), the magic square of order 12 is given by 135 165 3 273 89 211 53 223 109 191 25 251 9 267 141 159 55 221 91 209 35 241 119 181 285 15 153 123 235 65 199 77 263 37 179 97 147 129 279 21 197 79 233 67 169 107 253 47 85 215 49 227 111 189 27 249 137 163 5 271 59 217 95 205 33 243 117 183 7 269 139 161 239 61 203 73 261 39 177 99 283 17 151 125 193 83 229 71 171 105 255 45 149 127 281 19 113 187 29 247 133 167 1 275 87 213 51 225 31 245 115 185 11 265 143 157 57 219 93 207 259 41 175 101 287 13 155 121 237 63 201 75 173 103 257 43 145 131 277 23 195 81 231 69 1728 1728 1728 1728 1728 1728 1728 1728 1728 1728 1728 1728 Example 15 16 1728 1728 1728 1728 1728 1728 1728 1728 1728 1728 1728 1728 1728 1728 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php In this case the magic sum is S12×12 := 1728 = 123 , and sum of numbers is F144 := 20736 = 1442 = 124 . Each block of order 4 is pan diagonal magic square with magic sum S 4×4 := 576 . 13. Magic Square of Order 14 According to (7) we don’t have sequential magic square with numbers sum a perfect square. We will obtain only odd numbers magic square of order 14. Take k 14 in (5), we get 1 3 5 ... (2 142 1) 144 1 + 3 + 5 + ... + 389 + 391 = 144 = 38416 . (26) According to values given in (26), the magic square of order 14 is given by 2744 1 189 381 223 275 155 115 63 33 317 291 355 249 97 2744 293 31 219 351 375 253 173 233 7 105 139 165 75 325 2744 251 323 61 273 343 125 159 11 93 51 193 197 297 367 2744 379 221 299 91 309 229 9 153 67 339 45 191 279 133 2744 327 167 109 23 241 171 57 201 265 123 345 49 371 295 2744 207 19 177 73 41 87 267 117 225 2744 331 357 307 389 147 37 69 263 113 5 305 391 329 359 183 243 101 143 203 2744 89 129 141 179 71 3 205 47 2744 385 303 361 335 237 259 59 85 119 145 187 363 333 387 301 213 13 235 43 261 2744 135 287 311 53 149 95 209 185 239 271 365 83 21 341 2744 161 373 349 227 137 35 269 103 169 27 211 285 319 79 2744 277 347 15 321 283 215 231 29 157 369 77 121 107 195 2744 353 257 245 383 111 65 39 127 199 281 163 315 181 25 2744 175 247 55 289 217 17 99 255 131 81 313 377 337 151 2744 2744 2744 2744 2744 2744 2744 2744 2744 2744 2744 2744 2744 2744 2744 2744 Example 16 In this case the magic sum is S14×14 := 2744 = 143 , and sum of numbers is F196 := 38416 = 1962 = 144 . The middle block is a pan diagonal magic square of order 4 with magic sum S 4×4 := 1384 . 14. Magic Square of Order 15 According to (5) and (8), one can have a perfect square sum magic square of order 15 in two ways. One, using odd order numbers, and second with sequential values. 14.1 First Approach – Odd Numbers Take k 15 in (5), we get 1 3 5 ... (2 152 1) 154 , 1 + 3 + 5 + 7 + ... + 239 + 241 = 2252 = 50625. 17 (27) Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php According to values given in (27), the magic square of order 15 is given by 3375 3 339 165 381 207 61 281 103 443 265 35 307 137 409 239 171 387 183 9 345 113 445 241 71 283 139 419 215 37 317 189 15 351 177 363 251 73 293 115 421 217 47 319 149 395 357 153 369 195 21 295 91 431 253 83 329 125 397 227 49 375 201 27 333 159 433 263 85 271 101 407 229 59 305 127 65 277 107 439 269 33 309 135 411 237 1 341 163 383 205 109 449 245 67 287 141 417 213 39 315 173 385 181 11 343 247 77 289 119 425 219 45 321 147 393 191 13 353 175 361 299 95 427 257 79 327 123 399 225 51 355 151 371 193 23 437 259 89 275 97 405 231 57 303 129 373 203 25 331 161 31 311 133 413 235 5 337 167 379 209 63 279 105 441 267 143 415 211 41 313 169 389 185 7 347 111 447 243 69 285 221 43 323 145 391 187 17 349 179 365 249 75 291 117 423 325 121 401 223 53 359 155 367 197 19 297 93 429 255 81 403 233 55 301 131 377 199 29 335 157 435 261 87 273 99 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 Example 17 In this case the magic sum is S15×15 := 3375 = 153 , and sum of numbers is F225 := 50625 = 2252 = 154 . In this case each block of order 5 is a pan diagonal magic square forming a magic square of order 3: 3375 1095 1157 1123 3375 1153 1125 1097 3375 1127 1093 1155 3375 3375 3375 3375 3375 Example 18 14.2 Second Approach – Sequential According to formula (8), we have K : T (n) T (n 225), i.e., n 225 , n(n 1) (n 225)(n 224) 2 2 : 225n 25200 225 n 112 . K : Take n 337 , we get a perfect square, i.e., K : T (337) T (112) 50625 2252 154. Simplifying, one get 113 + 114 + ... + 336 + 337 = 154 = 2252 = 50625 . (28) Thus, we have a perfect square sum for the 225 numbers starting from 113. According to values given in (28), the magic square of order 15 is given by 18 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 114 282 195 303 216 143 253 164 334 245 130 266 181 317 232 198 306 204 117 285 169 335 233 148 254 182 322 220 131 271 207 120 288 201 294 238 149 259 170 323 221 136 272 187 310 291 189 297 210 123 260 158 328 239 154 277 175 311 226 137 300 213 126 279 192 329 244 155 248 163 316 227 142 265 176 145 251 166 332 247 129 267 180 318 231 113 283 194 304 215 167 337 235 146 256 183 321 219 132 270 199 305 203 118 284 236 151 257 172 325 222 135 273 186 309 208 119 289 200 293 262 160 326 241 152 276 174 312 225 138 290 188 298 209 124 331 242 157 250 161 315 228 141 264 177 299 214 125 278 193 128 268 179 319 230 115 281 196 302 217 144 252 165 333 246 184 320 218 133 269 197 307 205 116 286 168 336 234 147 255 223 134 274 185 308 206 121 287 202 295 237 150 258 171 324 275 173 313 224 139 292 190 296 211 122 261 159 327 240 153 314 229 140 263 178 301 212 127 280 191 330 243 156 249 162 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 3375 Example 19 In this case also the magic sum is S15×15 := 3375 = 153 , and sum of number is F225 := 50625 = 2252 = 154 . In this case each block of order 5 is a pan diagonal magic square forming a magic square of order 3: 3375 1110 1141 1124 3375 1139 1125 1111 3375 1126 1109 1140 3375 3375 3375 3375 3375 Example 20 Still, there are more possibilities of getting sequential numbers for the magic square of order 15, where numbers sum is a perfect square. See below examples, T(368) T(143) = 144 + 145 + ... + 368 = 57600 = 240 2 ; T(401) T(176) = 177 + 178 + ... + 401 = 65025 = 255 2 ; T(436) T(211) = 212 + 213 + ... + 436 = 72900 = 2702 . 15. Magic Square of Order 16 According to (8) we don’t have sequential magic square with number sum a perfect square. We will obtain only odd numbers magic square of order 16. Take n 256 in (5) or k 16 in (6), we get 1 3 5 ... (2 162 1) 164 1 + 3 + 5 + ... + 509 + 511 = 164 = 65536 . According to values given in (29), the magic square of order 16 is given by 19 (29) Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 1 463 243 317 91 405 169 359 109 419 159 337 55 505 197 267 307 253 449 15 361 167 411 85 351 145 429 99 261 203 503 57 477 19 303 225 391 73 373 187 433 127 323 141 491 37 281 215 239 289 29 467 181 379 71 393 131 333 113 447 217 279 43 485 45 483 223 273 119 441 133 331 65 399 179 381 27 469 233 295 287 209 493 35 325 139 439 121 371 189 385 79 297 231 475 21 497 63 259 205 427 101 345 151 413 83 367 161 455 9 309 251 195 269 49 511 153 343 107 421 175 353 93 403 245 315 7 457 87 409 165 363 13 451 255 305 59 501 201 263 97 431 147 349 357 171 407 89 319 241 461 3 265 199 507 53 339 157 417 111 395 69 377 183 465 31 291 237 487 41 277 219 445 115 335 129 185 375 75 389 227 301 17 479 213 283 39 489 143 321 125 435 123 437 137 327 33 495 211 285 23 473 229 299 77 387 191 369 329 135 443 117 275 221 481 47 293 235 471 25 383 177 397 67 423 105 341 155 509 51 271 193 459 5 313 247 401 95 355 173 149 347 103 425 207 257 61 499 249 311 11 453 163 365 81 415 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 4096 Example 21 In this case the magic sum is S16×16 := 4096 = 163 , and sum of numbers is F256 := 65536 = 2562 = 164 . Each block of order 4 is also a pan diagonal magic square with magic sum S 4×4 := 1024 . Moreover, the above magic square is also a bimagic with bimagic sum Sb16×16 := 1398096 . 16. Magic Square of Order 18 According to (7) we don’t have sequential magic square with number sum a perfect square. We will obtain only odd numbers magic square of order 18. Take k 18 in (5), we get 1 3 5 ... (2 182 1) 184 1 + 3 + 5 + ... + 645 + 647 = 184 = 104976 . (30) According to values given in (30), below are two different ways of writing the magic square of order 18: 20 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php ● First way: 5832 217 273 239 279 253 251 145 201 167 207 181 179 505 561 527 567 541 539 261 229 227 247 281 267 189 157 155 175 209 195 549 517 515 535 569 555 271 285 241 223 237 255 199 213 169 151 165 183 559 573 529 511 525 543 283 243 269 263 221 233 211 171 197 191 149 161 571 531 557 551 509 521 249 257 277 235 275 219 177 185 205 163 203 147 537 545 565 523 563 507 5832 5832 5832 5832 5832 231 225 259 265 245 287 159 153 187 193 173 215 519 513 547 553 533 575 577 633 599 639 613 611 289 345 311 351 325 323 1 57 23 63 37 35 621 589 587 607 641 627 333 301 299 319 353 339 45 13 11 31 65 51 631 645 601 583 597 615 343 357 313 295 309 327 55 69 25 7 21 39 643 603 629 623 581 593 355 315 341 335 293 305 67 27 53 47 5 17 609 617 637 595 635 579 321 329 349 307 347 291 33 41 61 19 59 3 591 585 619 625 605 647 303 297 331 337 317 359 15 9 43 49 29 71 73 129 95 135 109 107 433 489 455 495 469 467 361 417 383 423 397 395 117 85 83 103 137 123 477 445 443 463 497 483 405 373 371 391 425 411 127 141 97 79 93 111 487 501 457 439 453 471 415 429 385 367 381 399 139 99 125 119 77 89 499 459 485 479 437 449 427 387 413 407 365 377 105 113 133 91 131 75 465 473 493 451 491 435 393 401 421 379 419 363 87 81 115 121 101 143 447 441 475 481 461 503 375 369 403 409 389 431 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 Example 22 In this case the magic sum is S18×18 := 5832= 183 , and sum of all 324 numbers is F324 := 104976 = 3242 = 184 . Each block of order 6 is a magic square constructed according to section 6 with different sums: 5832 27 1512 3672 648 5832 6 7 17 3 27 1080 1944 2808 5832 5 9 13 27 3240 216 2376 5832 15 1 11 27 3 5832 5832 5832 5832 Example 23 27 27 27 27 Interestingly, the same happens with the sum of all members of each block of order 6 resulting again in a magic square of order 3: 34992 27 9072 22032 3888 34992 64 7 17 3 27 6480 11664 16848 34992 5 9 13 27 9072 22032 3888 34992 15 1 11 27 34992 34992 34992 34992 Example 24 27 27 27 27 ● Second way: Redistributing the total numbers 32992 in little different way, we get an alternative way of writing a magic square of order 18 with the same values given in (30). See below 21 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 5832 7 511 205 565 331 313 5 509 203 563 329 311 15 519 213 573 339 321 403 115 97 277 583 457 401 113 95 275 581 455 411 123 105 285 591 465 493 619 223 61 187 349 491 617 221 59 185 347 501 627 231 69 195 357 601 241 475 421 43 151 599 239 473 419 41 149 609 249 483 429 51 159 295 367 547 169 529 25 293 365 545 167 527 23 303 375 555 177 537 33 133 79 385 439 259 637 131 77 383 437 257 635 141 87 393 447 267 645 17 521 215 575 341 323 9 513 207 567 333 315 1 505 199 559 325 307 413 125 107 287 593 467 405 117 99 279 585 459 397 109 91 271 577 451 503 629 233 71 197 359 495 621 225 63 189 351 487 613 217 55 181 343 611 251 485 431 53 161 603 243 477 423 45 153 595 235 469 415 37 145 305 377 557 179 539 35 297 369 549 171 531 27 289 361 541 163 523 19 143 89 395 449 269 647 135 81 387 441 261 639 127 73 379 433 253 631 3 507 201 561 327 309 13 517 211 571 337 319 11 515 209 569 335 317 399 111 93 273 579 453 409 121 103 283 589 463 407 119 101 281 587 461 489 615 219 57 183 345 499 625 229 67 193 355 497 623 227 65 191 353 597 237 471 417 39 147 607 247 481 427 49 157 605 245 479 425 47 155 291 363 543 165 525 21 301 373 553 175 535 31 299 371 551 173 533 29 129 75 381 435 255 633 139 85 391 445 265 643 137 83 389 443 263 641 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 5832 Example 25 In this case also the magic sum is S18×18 := 5832= 183 , and sum of all 324 numbers is F324 := 104976 = 3242 = 184 . Here also each block of order 6 is a magic square with different magic sums: 1932 1992 1908 1920 1944 1968 1980 1896 1956 5832 5832 5832 5832 5832 12 5832 5832 5832 Example 26 161 166 159 160 162 164 165 158 163 486 486 486 486 486 486 486 486 Similar to first way, here also, the sum of all members of each block of order 6 results in a magic square of order 3: 34992 486 11592 11952 11448 34992 72 161 166 159 486 11520 11664 11808 34992 160 162 164 486 11880 11376 11736 34992 165 158 163 486 34992 34992 34992 34992 Example 27 486 486 486 486 17. Magic Square of Order 20 According to (7) we don’t have sequential magic square with number sum a perfect square. We will obtain only odd numbers magic square of order 18. Take n 400 in (5) or k 20 in (6), we get 1 3 5 ... (2 202 1) 204 1 + 3 + 5 + ... + 397 + 399 = 20 4 = 160000 . According to values given in (31), the magic square of order 20 for odd numbers is given by 22 (31) Inder J. Taneja 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 43 573 259 709 395 5 611 301 667 357 121 495 177 791 473 87 529 223 745 439 269 715 363 53 579 307 677 325 11 621 191 793 441 135 497 225 759 407 89 543 373 59 589 275 683 331 21 627 317 645 455 137 511 193 761 409 103 545 239 727 595 243 693 379 69 637 285 651 341 27 513 161 775 457 151 559 207 729 423 105 699 389 75 563 253 661 347 37 605 291 777 471 153 481 175 743 425 119 527 209 81 535 217 751 433 127 489 183 785 479 3 613 299 669 355 45 571 261 707 397 231 753 401 95 537 185 799 447 129 503 309 675 323 13 619 267 717 365 51 581 415 97 551 233 721 449 143 505 199 767 333 19 629 315 643 371 61 587 277 685 553 201 735 417 111 519 167 769 463 145 635 283 653 339 29 597 245 691 381 67 737 431 113 521 215 783 465 159 487 169 659 349 35 603 293 701 387 77 565 251 7 609 303 665 359 41 575 257 711 393 85 531 221 747 437 123 493 179 789 475 305 679 327 9 623 271 713 361 55 577 227 757 405 91 541 189 795 443 133 499 329 23 625 319 647 375 57 591 273 681 411 101 547 237 725 453 139 509 195 763 639 287 649 343 25 593 241 695 377 71 557 205 731 421 107 515 163 773 459 149 663 345 39 607 289 697 391 73 561 255 741 427 117 525 211 779 469 155 483 173 125 491 181 787 477 83 533 219 749 435 47 569 263 705 399 1 615 297 671 353 187 797 445 131 501 229 755 403 93 539 265 719 367 49 583 311 673 321 15 617 451 141 507 197 765 413 99 549 235 723 369 63 585 279 687 335 17 631 313 641 517 165 771 461 147 555 203 733 419 109 599 247 689 383 65 633 281 655 337 31 781 467 157 485 171 739 429 115 523 213 703 385 79 567 249 657 351 33 601 295 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 Example 28 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 8000 In this case the magic square is pan diagonal and magic sum is S20×20 := 8000= 203 . Also, the sum of all 400 numbers is F400 := 160000 = 4002 = 204 . Moreover each block of order 5 a pan diagonal magic square with different magic sums: 8000 8000 8000 8000 1979 8000 1941 8000 2057 8000 2023 2017 1943 2061 8000 8000 8000 8000 8000 8000 8000 Example 29 2063 1977 2019 8000 1939 2021 1983 8000 1981 2059 1937 8000 The second block from up is a pan diagonal magic square of order with magic sum 2017, i.e., the year we are. 18. Magic Square of Order 21 According to (5) and (8), one can have a perfect square sum magic square of order 21 in two ways. One using odd order numbers and secondly having sequential values. Below are examples of both type. 18.1 First Approach – Odd Numbers Take k 21 in (5), we get 1 3 5 ... (2 212 1) 214 1 + 3 + 5 + 7 + ... + 879 + 881 = 4412 = 194481. 23 (32) Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php According to values given in (32), we shall contruct in two different ways of magic square of order 21: ●First way: 9261 295 373 339 319 383 363 329 197 275 241 221 285 265 231 687 765 731 711 775 755 721 311 389 355 335 301 365 345 213 291 257 237 203 267 247 703 781 747 727 693 757 737 327 307 371 337 317 381 361 229 209 273 239 219 283 263 719 699 763 729 709 773 753 343 309 387 353 333 299 377 245 211 289 255 235 201 279 735 701 779 745 725 691 769 359 325 305 369 349 315 379 261 227 207 271 251 217 281 751 717 697 761 741 707 771 375 341 321 385 351 331 297 277 243 223 287 253 233 199 767 733 713 777 743 723 689 391 357 323 303 367 347 313 293 259 225 205 269 249 215 783 749 715 695 759 739 705 785 863 829 809 873 853 819 393 471 437 417 481 461 427 1 79 45 25 89 69 35 801 879 845 825 791 855 835 409 487 453 433 399 463 443 17 95 61 41 7 71 51 817 797 861 827 807 871 851 425 405 469 435 415 479 459 33 13 77 43 23 87 67 833 799 877 843 823 789 867 441 407 485 451 431 397 475 49 15 93 59 39 5 83 849 815 795 859 839 805 869 457 423 403 467 447 413 477 65 31 11 75 55 21 85 865 831 811 875 841 821 787 473 439 419 483 449 429 395 81 47 27 91 57 37 3 881 847 813 793 857 837 803 489 455 421 401 465 445 411 97 63 29 9 73 53 19 99 177 143 123 187 167 133 589 667 633 613 677 657 623 491 569 535 515 579 559 525 115 193 159 139 105 169 149 605 683 649 629 595 659 639 507 585 551 531 497 561 541 131 111 175 141 121 185 165 621 601 665 631 611 675 655 523 503 567 533 513 577 557 147 113 191 157 137 103 181 637 603 681 647 627 593 671 539 505 583 549 529 495 573 163 129 109 173 153 119 183 653 619 599 663 643 609 673 555 521 501 565 545 511 575 179 145 125 189 155 135 101 669 635 615 679 645 625 591 571 537 517 581 547 527 493 195 161 127 107 171 151 117 685 651 617 597 661 641 607 587 553 519 499 563 543 509 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 Example 30 In this case the magic sum is S21×21 := 9261 = 213 , and sum of numbers is F441 := 194481 = 4412 = 214 . Each block of order 7 are pan diagonal magic square with different magic sums forming again a magic square of order 3: 9261 27 2401 5831 1029 9261 1715 3087 4459 9261 5145 343 3773 9261 7 7 17 3 27 5 9 13 27 15 1 11 27 9261 9261 9261 3 9261 Example 31 27 27 27 27 Interestingly, the same happens with the sum of all members of each block of order 7 resulting again in a magic square of order 3: 64827 27 16807 40817 7203 64827 7 7 17 3 27 12005 21609 31213 64827 5 9 13 27 36015 2401 26411 64827 15 1 11 27 4 64827 64827 64827 64827 Example 32 27 27 27 27 ●Second way: Proceeding similar lines of order 18, we can also calculate second way of writing magic square of order 21: 24 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 9261 7 709 403 223 799 619 313 5 707 401 221 797 617 311 15 717 411 231 807 627 321 151 853 547 367 61 637 457 149 851 545 365 59 635 455 159 861 555 375 69 645 465 295 115 691 385 205 781 601 293 113 689 383 203 779 599 303 123 699 393 213 789 609 439 133 835 529 349 43 745 437 131 833 527 347 41 743 447 141 843 537 357 51 753 583 277 97 673 493 187 763 581 275 95 671 491 185 761 591 285 105 681 501 195 771 727 421 241 817 511 331 25 725 419 239 815 509 329 23 735 429 249 825 519 339 33 871 565 259 79 655 475 169 869 563 257 77 653 473 167 879 573 267 87 663 483 177 17 719 413 233 809 629 323 9 711 405 225 801 621 315 1 703 397 217 793 613 307 161 863 557 377 71 647 467 153 855 549 369 63 639 459 145 847 541 361 55 631 451 305 125 701 395 215 791 611 297 117 693 387 207 783 603 289 109 685 379 199 775 595 449 143 845 539 359 53 755 441 135 837 531 351 45 747 433 127 829 523 343 37 739 593 287 107 683 503 197 773 585 279 99 675 495 189 765 577 271 91 667 487 181 757 737 431 251 827 521 341 35 729 423 243 819 513 333 27 721 415 235 811 505 325 19 881 575 269 89 665 485 179 873 567 261 81 657 477 171 865 559 253 73 649 469 163 3 705 399 219 795 615 309 13 715 409 229 805 625 319 11 713 407 227 803 623 317 147 849 543 363 57 633 453 157 859 553 373 67 643 463 155 857 551 371 65 641 461 291 111 687 381 201 777 597 301 121 697 391 211 787 607 299 119 695 389 209 785 605 435 129 831 525 345 39 741 445 139 841 535 355 49 751 443 137 839 533 353 47 749 579 273 93 669 489 183 759 589 283 103 679 499 193 769 587 281 101 677 497 191 767 723 417 237 813 507 327 21 733 427 247 823 517 337 31 731 425 245 821 515 335 29 867 561 255 75 651 471 165 877 571 265 85 661 481 175 875 569 263 83 659 479 173 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 Example 33 In this case the magic sum is S21×21 := 9261 = 213 , and sum of numbers is F441 := 194481 = 4412 = 214 . Each block of order 7 is a pan diagonal magic square with different magic sums forming again a magic square of order 3: 3073 3143 3059 3087 3129 3031 9261 9261 9261 3045 9261 7 439 3115 9261 437 3101 9261 447 9261 9261 1323 Example 34 449 441 433 1323 1323 435 1323 445 1323 443 1323 1323 1323 Interestingly, the same happens with the sum of all members of each block of order 7 resulting again in a magic square of order 3: 64827 1323 21511 22001 21315 64827 7 21413 21609 21805 64827 21903 21217 21707 64827 439 437 447 64827 1323 1323 1323 1323 2 64827 64827 64827 Example 35 449 435 1323 441 445 1323 433 443 1323 18.2 Second Approach – Sequential According to formula (8), we have K : T (n) T (n 441), i.e., 25 n 441 , Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php n(n 1) (n 441)(n 440) 2 2 : 441n 97020 441 n 220 . K : Take n 661 , we get a perfect square, i.e., K : T (661) T (220) 194481 4412 214. Simplifying, one get 221 + 222 + ... + 660 + 661 = 214 = 4412 = 194481 . (33) Thus, we have a perfect square sum for the 441 numbers starting from 221 to 661. According to values given in (33), we can easily construct magic square of order 21 of sequential values giving sum of all numbers as prefect sum. 368 407 390 380 412 402 385 319 358 341 331 363 353 336 564 603 586 576 608 598 581 376 415 398 388 371 403 393 327 366 349 339 322 354 344 572 611 594 584 567 599 589 384 374 406 389 379 411 401 335 325 357 340 330 362 352 580 570 602 585 575 607 597 392 375 414 397 387 370 409 343 326 365 348 338 321 360 588 571 610 593 583 566 605 400 383 373 405 395 378 410 351 334 324 356 346 329 361 596 579 569 601 591 574 606 408 391 381 413 396 386 369 359 342 332 364 347 337 320 604 587 577 609 592 582 565 416 399 382 372 404 394 377 367 350 333 323 355 345 328 612 595 578 568 600 590 573 613 652 635 625 657 647 630 417 456 439 429 461 451 434 221 260 243 233 265 255 238 621 660 643 633 616 648 638 425 464 447 437 420 452 442 229 268 251 241 224 256 246 629 619 651 634 624 656 646 433 423 455 438 428 460 450 237 227 259 242 232 264 254 637 620 659 642 632 615 654 441 424 463 446 436 419 458 245 228 267 250 240 223 262 645 628 618 650 640 623 655 449 432 422 454 444 427 459 253 236 226 258 248 231 263 653 636 626 658 641 631 614 457 440 430 462 445 435 418 261 244 234 266 249 239 222 661 644 627 617 649 639 622 465 448 431 421 453 443 426 269 252 235 225 257 247 230 270 309 292 282 314 304 287 515 554 537 527 559 549 532 466 505 488 478 510 500 483 278 317 300 290 273 305 295 523 562 545 535 518 550 540 474 513 496 486 469 501 491 286 276 308 291 281 313 303 531 521 553 536 526 558 548 482 472 504 487 477 509 499 294 277 316 299 289 272 311 539 522 561 544 534 517 556 490 473 512 495 485 468 507 302 285 275 307 297 280 312 547 530 520 552 542 525 557 498 481 471 503 493 476 508 310 293 283 315 298 288 271 555 538 528 560 543 533 516 506 489 479 511 494 484 467 318 301 284 274 306 296 279 563 546 529 519 551 541 524 514 497 480 470 502 492 475 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 9261 Example 36 In this case, the magic sum is S21×21 := 9261 = 213 , and sum of number is F441 := 50625 = 4412 = 214. F441 := 194481 = 4412 = 214 . In this case each block of order 7 is a pan diagonal magic square with different magic sums forming again a magic square of order 3: 2744 4459 2401 3087 4116 1715 9261 9261 9261 27 3 2058 9261 7 8 13 6 27 3773 9261 7 9 11 27 3430 9261 12 5 10 27 9261 9261 27 27 27 27 Example 37 Interestingly, the same happens with the sum of all members of each block of order 7 resulting again in a magic square of order 3: 26 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 19208 31213 16807 21609 28812 12005 64827 64827 64827 14406 64827 74 26411 64827 24010 64827 64827 64827 Example 38 27 27 8 13 6 7 9 11 27 12 5 10 27 27 27 27 27 Proceeding similar lines of order 18, we can also calculate second way of writing magic square of order 21: Still, there are more possibilities of getting sequential numbers for the magic square of order 21, where numbers sum is a perfect square. See below examples, T(704) T(263) = 264 + 265 + ... + 704 = 213444 = 462 2 ; T(749) T(308) = 309 + 310 + ... + 749 = 233289 = 483 2 ; T(796) T(355) = 356 + 357 + ... + 796 = 254016 = 504 2 . 19. Magic Square of Order 22 According to (8) we don’t have sequential magic square with number sum a perfect square. We will obtain only odd numbers magic square of order 22. Take n 484 in (5) or k 22 in (6), we get 1 3 5 ... (2 222 1) 224 1 + 3 + 5 + ... + 965 + 967 = 224 = 234256 . (34) According to values given in (34), the magic square of order 22 for odd numbers is given by 1 229 403 63 143 563 659 745 611 697 187 47 221 405 107 743 609 695 571 657 151 11 93 223 397 703 569 655 741 607 91 137 183 181 7 53 769 859 941 807 893 465 341 515 293 379 939 805 901 771 853 513 291 377 473 339 903 765 851 937 813 385 471 337 511 289 399 195 55 139 225 653 739 615 701 567 227 401 19 99 185 613 699 565 651 747 9 89 45 135 849 945 815 897 763 335 509 297 383 469 809 895 761 857 947 295 381 467 333 517 773 869 955 821 907 231 331 417 503 281 367 453 35 131 217 83 169 529 625 711 577 663 953 819 905 781 867 499 277 363 463 241 327 413 215 81 167 43 129 709 575 661 537 623 913 779 865 951 817 459 237 323 409 495 287 373 175 41 127 213 79 669 535 621 707 573 863 949 825 911 777 419 505 283 369 455 233 319 125 211 87 173 39 619 705 581 667 533 823 909 775 861 957 365 451 243 329 415 501 279 85 171 37 123 219 579 665 531 617 713 49 97 475 523 395 95 133 351 301 481 141 179 525 387 347 177 5 303 483 521 3 51 389 349 299 285 371 457 235 321 407 507 749 845 931 797 883 601 647 693 729 555 649 685 731 557 603 553 253 427 591 671 831 877 923 959 785 879 21 191 155 101 61 915 111 57 17 197 147 961 193 153 103 67 13 787 59 23 189 149 109 833 145 105 65 15 199 27 889 755 841 927 793 305 391 477 343 527 799 885 751 837 933 325 411 497 275 375 461 239 Example 39 929 795 881 757 843 345 519 307 393 479 839 925 801 887 753 549 639 721 587 673 25 121 207 73 159 719 585 681 551 633 205 71 157 33 119 683 545 631 717 593 165 31 117 203 69 629 725 595 677 543 115 201 77 163 29 589 675 541 637 727 75 161 27 113 209 643 689 735 561 597 873 919 965 791 827 733 559 605 641 687 963 789 835 871 917 715 599 245 429 635 679 539 645 247 421 423 723 583 691 249 251 425 547 627 737 441 317 491 269 355 783 263 437 811 891 489 267 353 449 315 935 829 255 439 855 361 447 313 487 265 899 759 875 257 431 311 485 273 359 445 433 943 803 921 259 271 357 443 309 493 261 435 767 847 967 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php In this case the magic sum S22×22 := 10648= 223 . Also, the sum of all 484 numbers is F484 := 234256 = 4842 = 224 . There are 12 block of order 4 and 1 of order 7 are magic squares. These are given by bold face letters. The approach applied to construct this magic square is based on the procedure of H. White [9]. This approach is by used of computer program. 20. Magic Square of Order 24 According to (7) we don’t have sequential magic square with number sum a perfect square. We will obtain only odd numbers magic square of order 24. Take k 24 in (5), we get 1 3 5 ... (2 242 1) 244 1 + 3 + 5 + ... + 1149 + 1151 = 24 4 = 331776 . (35) There are many ways of constructing magic square of order 24 with odd order numbers, for example, 8 3, 3 8, 4 6 or 6 4 . Instead of using all the four ways, we shall use only two. In the case of 8 3 , we can work with bimagic square of order 8 as given in Section 8. See below: ● First way 8×3 : 277 727 637 79 475 1105 979 313 287 737 647 89 485 1115 989 323 273 723 633 75 471 1101 975 309 457 1123 961 331 223 781 583 133 467 1133 971 341 233 791 593 143 453 1119 957 327 219 777 579 129 7 709 799 205 385 907 1033 547 17 719 809 215 395 917 1043 557 3 705 795 201 381 903 1029 543 403 889 1051 529 61 655 853 151 413 899 1061 539 71 665 863 161 399 885 1047 525 57 651 849 147 673 43 169 835 871 421 511 1069 683 53 179 845 881 431 521 1079 669 39 165 831 867 417 507 1065 925 367 565 1015 691 25 187 817 935 377 575 1025 701 35 197 827 921 363 561 1011 687 21 183 813 763 241 115 601 1141 439 349 943 773 251 125 611 1151 449 359 953 759 237 111 597 1137 435 345 939 1087 493 295 997 745 259 97 619 1097 503 305 1007 755 269 107 629 1083 489 291 993 741 255 93 615 275 725 635 77 473 1103 977 311 279 729 639 81 477 1107 981 315 283 733 643 85 481 1111 985 319 455 1121 959 329 221 779 581 131 459 1125 963 333 225 783 585 135 463 1129 967 337 229 787 589 139 5 707 797 203 383 905 1031 545 9 711 801 207 387 909 1035 549 13 715 805 211 391 913 1039 553 401 887 1049 527 59 653 851 149 405 891 1053 531 63 657 855 153 409 895 1057 535 67 661 859 157 671 41 167 833 869 419 509 1067 675 45 171 837 873 423 513 1071 679 49 175 841 877 427 517 1075 923 365 563 1013 689 23 185 815 927 369 567 1017 693 27 189 819 931 373 571 1021 697 31 193 823 761 239 113 599 1139 437 347 941 765 243 117 603 1143 441 351 945 769 247 121 607 1147 445 355 949 1085 491 293 995 743 257 95 617 1089 495 297 999 747 261 99 621 1093 499 301 1003 751 265 103 625 285 735 645 87 483 1113 987 321 271 721 631 73 469 1099 973 307 281 731 641 83 479 1109 983 317 465 1131 969 339 231 789 591 141 451 1117 955 325 217 775 577 127 461 1127 965 335 227 785 587 137 15 717 807 213 393 915 1041 555 1 703 793 199 379 901 1027 541 11 713 803 209 389 911 1037 551 411 897 1059 537 69 663 861 159 397 883 1045 523 55 649 847 145 407 893 1055 533 65 659 857 155 681 51 177 843 879 429 519 1077 667 37 163 829 865 415 505 1063 677 47 173 839 875 425 515 1073 933 375 573 1023 699 33 195 825 919 361 559 1009 685 19 181 811 929 371 569 1019 695 29 191 821 771 249 123 609 1149 447 357 951 757 235 109 595 1135 433 343 937 767 245 119 605 1145 443 353 947 1095 501 303 1005 753 267 105 627 1081 487 289 991 739 253 91 613 1091 497 299 1001 749 263 101 623 Example 40 In this case the magic sum S24×24 := 13824 = 243 . Also, the sum of all 576 numbers is F576 := 331776 = 5762 = 244 . The construction of above magic square is based on the procedure of making combinations of magic square of order 8 with order 3. The procedure used is the one given in section 8 of bimagic square of order 8 combining with order 3 given in section 3. Below are the details of each block of order 8 forming a magic square of order 3: 28 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 4592 4672 4560 4576 4608 4640 4656 4544 4624 13824 13824 13824 13824 864 4 13824 2 287 292 285 864 13824 286 288 290 864 13824 291 284 289 864 13824 864 864 864 864 Example 41 The magic squares formed by sum of all members each block of order 8 forms again a magic square of order 3: 110592 864 36736 37376 36480 110592 27 287 292 285 864 36608 36864 37120 110592 286 288 290 864 37248 36352 36992 110592 291 284 289 864 110592 110592 110592 110592 Example 42 864 864 864 864 ● Second way 6×4 : 433 73 1081 577 489 129 1137 633 455 95 1103 599 495 135 1143 639 469 109 1117 613 467 107 1115 611 793 865 145 361 849 921 201 417 815 887 167 383 855 927 207 423 829 901 181 397 827 899 179 395 1 505 649 1009 57 561 705 1065 23 527 671 1031 63 567 711 1071 37 541 685 1045 35 539 683 1043 937 721 289 217 993 777 345 273 959 743 311 239 999 783 351 279 973 757 325 253 971 755 323 251 477 117 1125 621 445 85 1093 589 443 83 1091 587 463 103 1111 607 497 137 1145 641 483 123 1131 627 837 909 189 405 805 877 157 373 803 875 155 371 823 895 175 391 857 929 209 425 843 915 195 411 45 549 693 1053 13 517 661 1021 11 515 659 1019 31 535 679 1039 65 569 713 1073 51 555 699 1059 981 765 333 261 949 733 301 229 947 731 299 227 967 751 319 247 1001 785 353 281 987 771 339 267 487 127 1135 631 501 141 1149 645 457 97 1105 601 439 79 1087 583 453 93 1101 597 471 111 1119 615 847 919 199 415 861 933 213 429 817 889 169 385 799 871 151 367 813 885 165 381 831 903 183 399 55 559 703 1063 69 573 717 1077 25 529 673 1033 7 511 655 1015 21 525 669 1029 39 543 687 1047 991 775 343 271 1005 789 357 285 961 745 313 241 943 727 295 223 957 741 309 237 975 759 327 255 499 139 1147 643 459 99 1107 603 485 125 1133 629 479 119 1127 623 437 77 1085 581 449 89 1097 593 859 931 211 427 819 891 171 387 845 917 197 413 839 911 191 407 797 869 149 365 809 881 161 377 67 571 715 1075 27 531 675 1035 53 557 701 1061 47 551 695 1055 5 509 653 1013 17 521 665 1025 1003 787 355 283 963 747 315 243 989 773 341 269 983 767 335 263 941 725 293 221 953 737 305 233 465 105 1113 609 473 113 1121 617 493 133 1141 637 451 91 1099 595 491 131 1139 635 435 75 1083 579 825 897 177 393 833 905 185 401 853 925 205 421 811 883 163 379 851 923 203 419 795 867 147 363 33 537 681 1041 41 545 689 1049 61 565 709 1069 19 523 667 1027 59 563 707 1067 3 507 651 1011 969 753 321 249 977 761 329 257 997 781 349 277 955 739 307 235 995 779 347 275 939 723 291 219 447 87 1095 591 441 81 1089 585 475 115 1123 619 481 121 1129 625 461 101 1109 605 503 143 1151 647 807 879 159 375 801 873 153 369 835 907 187 403 841 913 193 409 821 893 173 389 863 935 215 431 15 951 519 735 663 303 1023 231 9 945 513 729 657 297 1017 225 43 979 547 763 691 331 1051 259 49 985 553 769 697 337 1057 265 29 965 533 749 677 317 1037 245 71 1007 575 791 719 359 1079 287 Example 43 In this case also the magic sum S24×24 := 13824 = 243 . Also, the sum of all 576 numbers is F576 := 331776 = 5762 = 244 . The construction of above magic square is based on the procedure of making combinations of magic square of order 4 with order 6. The procedure used is the one given in section 4. Each block of order 4 is perfect pan diagonal magic square of order 4 with different magic sums. These magic sums again make a magic square of order 6: 29 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 13824 13824 13824 13824 13824 13824 13824 13824 13824 13824 13824 13824 13824 13824 2164 2388 2252 2412 2308 2300 2340 2212 2204 2284 2420 2364 2380 2436 2260 2188 2244 2316 2428 2268 2372 2348 2180 2228 2292 2324 2404 2236 2396 2172 2220 2196 2332 2356 2276 2444 4 3456 3456 3456 3456 3456 3456 3456 3456 3456 3456 3456 3456 3456 3456 541 597 563 603 577 575 585 553 551 571 605 591 595 609 565 547 561 579 607 567 593 587 545 557 573 581 601 559 599 543 555 549 583 589 569 611 Example 44 The magic squares formed by sum of all members each block of order 4 forms again a magic square of order 6: 55296 8656 9552 9008 9648 9232 9200 9360 8848 8816 9136 9680 9456 9520 9744 9040 8752 8976 9264 9712 9072 9488 9392 8720 8912 9168 9296 9616 8944 9584 8688 8880 8784 9328 9424 9104 9776 55296 3456 4 2 55296 55296 55296 55296 55296 55296 55296 55296 55296 55296 55296 55296 541 597 563 603 577 575 585 553 551 571 605 591 595 609 565 547 561 579 607 567 593 587 545 557 573 581 601 559 599 543 555 549 583 589 569 611 3456 3456 3456 3456 3456 3456 3456 3456 3456 3456 3456 3456 3456 Example 45 Interestingly, the magic sum of second magic square in both the cases is sequential digits 3456. 21. Magic Square of Order 25 According to (5) and (8), one can have a perfect square sum magic square of order 25 in two ways. One using odd order numbers and secondly having sequential values. Below are examples of both type. 21.1 First Approach – Odd Numbers Take n 252 625 in (5) or k 25 in (6), we get 1 3 5 ... (2 252 1) 214 1 + 3 + 5 + 7 + ... + 1247 + 1249 = 6252 = 390625 . According to values given in (36), the magic square of order 25 is given by 30 (36) Inder J. Taneja 1 913 325 1237 649 1069 721 133 795 407 877 289 1191 553 215 685 97 959 361 1023 493 1105 517 179 831 337 1249 601 13 925 145 757 419 1071 733 1153 565 227 889 291 961 373 1035 697 59 529 181 843 455 1117 613 25 937 349 1201 421 1083 745 107 769 239 891 253 1165 577 1047 659 61 973 385 805 467 1129 531 193 RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 949 301 1213 625 37 707 119 771 433 1095 265 1177 589 241 853 73 985 397 1009 661 1131 543 155 817 479 1225 637 49 901 313 783 445 1057 719 121 591 203 865 277 1189 359 1011 673 85 997 167 829 481 1143 505 885 297 1159 561 223 693 55 967 379 1031 451 1113 525 187 849 19 921 333 1245 607 1077 739 141 753 415 1161 573 235 897 259 979 381 1043 655 67 537 199 801 463 1125 345 1207 619 21 933 103 765 427 1089 741 247 859 261 1173 585 1005 667 79 981 393 813 475 1137 549 151 621 33 945 307 1219 439 1091 703 115 777 273 1185 597 209 861 81 993 355 1017 679 1149 501 163 825 487 907 319 1221 633 45 715 127 789 441 1053 559 211 873 285 1197 367 1029 681 93 955 175 837 499 1101 513 1233 645 7 919 321 791 403 1065 727 139 469 1121 533 195 807 27 939 341 1203 615 1085 747 109 761 423 893 255 1167 579 231 651 63 975 387 1049 545 157 819 471 1133 303 1215 627 39 941 111 773 435 1097 709 1179 581 243 855 267 987 399 1001 663 75 821 483 1145 507 169 639 41 903 315 1227 447 1059 711 123 785 205 867 279 1181 593 1013 675 87 999 351 1107 519 171 833 495 915 327 1239 641 3 723 135 797 409 1061 281 1193 555 217 879 99 951 363 1025 687 183 845 457 1119 521 1241 603 15 927 339 759 411 1073 735 147 567 229 881 293 1155 375 1037 699 51 963 1093 705 117 779 431 851 263 1175 587 249 669 71 983 395 1007 477 1139 541 153 815 35 947 309 1211 623 129 781 443 1055 717 1187 599 201 863 275 995 357 1019 671 83 503 165 827 489 1141 311 1223 635 47 909 405 1067 729 131 793 213 875 287 1199 551 1021 683 95 957 369 839 491 1103 515 177 647 9 911 323 1235 731 143 755 417 1079 299 1151 563 225 887 57 969 371 1033 695 1115 527 189 841 453 923 335 1247 609 11 767 429 1081 743 105 575 237 899 251 1163 383 1045 657 69 971 191 803 465 1127 539 1209 611 23 935 347 677 89 991 353 1015 485 1147 509 161 823 43 905 317 1229 631 1051 713 125 787 449 869 271 1183 595 207 953 365 1027 689 91 511 173 835 497 1109 329 1231 643 5 917 137 799 401 1063 725 1195 557 219 871 283 1039 691 53 965 377 847 459 1111 523 185 605 17 929 331 1243 413 1075 737 149 751 221 883 295 1157 569 65 977 389 1041 653 1123 535 197 809 461 931 343 1205 617 29 749 101 763 425 1087 257 1169 571 233 895 391 1003 665 77 989 159 811 473 1135 547 1217 629 31 943 305 775 437 1099 701 113 583 245 857 269 1171 Example 43 In this case the magic sum is S25×25 := 15625 = 253 , and sum of numbers is F625 := 390625 = 6252 = 254 . In this the magic square is pan diagonal and bimagic with bimagic sum Sb 25×25 := 13020825 . Moreover each block of order 5 is a pan diagonal magic square constant magic sum S5×5 := 3125 = 55 . 21.2 Second Approach – Sequential According to formula (7), we have K : T (n) T (n 625), i.e., n 625 , n(n 1) (n 625)(n 624) 2 2 : 625n 195000 625 n 312 . K : Take n 937 , we get a perfect square, i.e., K (937) : T (937) T (312) 390625 6252 254. Simplifying, one get 313 + 314 + ... + 936 + 937 = 254 = 6252 = 390625 . (37) Thus, we have a perfect square sum for the 625 numbers starting from 313 to 937. According to values given in (37), we can easily construct magic square of order 25 of sequential values giving sum of all numbers as prefect sum. 31 Inder J. Taneja 313 769 475 931 637 847 673 379 710 516 751 457 908 589 420 655 361 792 493 824 559 865 571 402 728 481 937 613 319 775 385 691 522 848 679 889 595 426 757 458 793 499 830 661 342 577 403 734 540 871 619 325 781 487 913 523 854 685 366 697 432 758 439 895 601 836 642 343 799 505 715 546 877 578 409 RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php 787 463 919 625 331 666 372 698 529 860 445 901 607 433 739 349 805 511 817 643 878 584 390 721 552 925 631 337 763 469 704 535 841 672 373 608 414 745 451 907 492 818 649 355 811 396 727 553 884 565 755 461 892 593 424 659 340 796 502 828 538 869 575 406 737 322 773 479 935 616 851 682 383 689 520 893 599 430 761 442 802 503 834 640 346 581 412 713 544 875 485 916 622 323 779 364 695 526 857 683 436 742 443 899 605 815 646 352 803 509 719 550 881 587 388 623 329 785 466 922 532 858 664 370 701 449 905 611 417 743 353 809 490 821 652 887 563 394 725 556 766 472 923 629 335 670 376 707 533 839 592 418 749 455 911 496 827 653 359 790 400 731 562 863 569 929 635 316 772 473 708 514 845 676 382 547 873 579 410 716 326 782 483 914 620 855 686 367 693 524 759 440 896 602 428 638 344 800 506 837 585 391 722 548 879 464 920 626 332 783 368 699 530 861 667 902 603 434 740 446 806 512 813 644 350 723 554 885 566 397 632 333 764 470 926 536 842 668 374 705 415 746 452 903 609 819 650 356 812 488 866 572 398 729 560 770 476 932 633 314 674 380 711 517 843 453 909 590 421 752 362 788 494 825 656 404 735 541 872 573 933 614 320 776 482 692 518 849 680 386 596 427 753 459 890 500 831 662 338 794 859 665 371 702 528 738 444 900 606 437 647 348 804 510 816 551 882 583 389 720 330 786 467 918 624 377 703 534 840 671 906 612 413 744 450 810 491 822 648 354 564 395 726 557 883 468 924 630 336 767 515 846 677 378 709 419 750 456 912 588 823 654 360 791 497 732 558 864 570 401 636 317 768 474 930 678 384 690 521 852 462 888 594 425 756 341 797 498 829 660 870 576 407 733 539 774 480 936 617 318 696 527 853 684 365 600 431 762 438 894 504 835 641 347 798 408 714 545 876 582 917 618 324 780 486 651 357 808 489 820 555 886 567 393 724 334 765 471 927 628 838 669 375 706 537 747 448 904 610 416 789 495 826 657 358 568 399 730 561 867 477 928 634 315 771 381 712 513 844 675 910 591 422 748 454 832 658 339 795 501 736 542 868 574 405 615 321 777 478 934 519 850 681 387 688 423 754 460 891 597 345 801 507 833 639 874 580 411 717 543 778 484 915 621 327 687 363 694 525 856 441 897 598 429 760 508 814 645 351 807 392 718 549 880 586 921 627 328 784 465 700 531 862 663 369 604 435 741 447 898 Example 44 In this case, also the magic sum is F252 S25×25 := 15625 = 253 , and sum of numbers is := 390625 = 6252 = 254 . The magic square is pan diagonal and bimagic with bimagic sum Sb 25×25 := 10579425 . Moreover each block of order 5 is a pan diagonal magic square constant magic sum S5×5 := 3125 = 55 . Still, there are more possibilities of getting sequential numbers for the magic square of order 25, where the numbers sum is a perfect square. See below examples, T(988) T(363) = 364 + 365 + ... + 988 = 422500 = 650 2 ; T(1041) T(416) = 417 + 418 + ... + 1041 = 455625 = 6752 ; T(1096) T(471) = 472 + 473 + ... + 1096 = 490000 = 7002 . 22. Summary Summarizing the results obtained above, we lead to following interesting table: 32 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php Order of Magic Square 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 … Number of Elements Magic Sum, S k k 2 3 Sum of all Numbers, F 2 k 4 3 42 52 62 72 82 92 102 3 43 53 63 73 83 93 103 3 44 54 64 74 84 94 104 112 113 114 122 132 123 133 124 134 142 152 162 172 182 192 20 2 212 143 153 163 173 183 193 203 213 144 154 164 174 184 194 20 4 214 22 2 232 223 233 22 4 234 24 2 252 … 243 24 4 254 ... 253 … Table 1 The above Table 1 is up to magic square of order 25. According to formulas given in Section 2, we can extend it for higher orders. From the above Table 1, we derive the following general values: There exists magic squares following properties: Order of Magic Square: k k2 Number of Elements: k3 Magic Sum: k4 Sum of all numbers: This is true for all order magic squares, i.e., k = 3, 4, 5, ... Table 2 33 Inder J. Taneja RGMIA Research Report Collection, 20 (2017), http://rgmia.org/v20.php The examples of magic squares written above are the adaptations of author’s work on intervally distributed magic squares studied in Taneja (2015a, 2015b, 2015c). For other kind of magic squares refer Taneja (2015d, 2015e). The examples given for the magic square of orders 8, 9, 16 and 25 are bimagic squares. The order 14 magic square is based on the approach due to Zhu [10], and the order 22 is based on the approach due to White [9]. Acknowledgement The author wishes to thank William Walkington (France) for his comments and suggestions. References 1. L. SALLOWS (2017), Online discussion, January. 2. I.J. TANEJA (2015a), Intervally Distributed, Palindromic, Selfie Magic Squares, and Double Colored Patterns, RGMIA Research Report Collection, Art. 127, Vol. 18, pp. 1-45, http://rgmia.org/papers/v18/v18a127.pdf. 3. I.J. TANEJA (2015b), Intervally Distributed, Palindromic and Selfie Magic Squares: Genetic Table and Colored Pattern - Orders 11 to 20, RGMIA Research Report Collection, Art. 140, Vol. 18, pp. 1-43, http://rgmia.org/papers/v18/v18a140.pdf. 4. I.J. TANEJA (2015c), Intervally Distributed, Palindromic and Selfie Magic Squares – Orders 21 to 25, RGMIA Research Report Collection, Art. 151, Vol. 18, pp. 1-33, http://rgmia.org/papers/v18/v18a151.pdf. 5. I.J. TANEJA (2015e), Selfie Palindromic Magic Squares, RGMIA Research Report Collection, Art. 98, Vol. 18, pp. 1-15, http://rgmia.org/papers/v18/v18a98.pdf. 6. I.J. TANEJA (2015d), Multi-Digits Magic Squares, RGMIA Research Report Collection, Art. 159, Vol. 18, pp. 1-22, http://rgmia.org/papers/v18/v18a159.pdf. 7. W. TRUMP (2017), Online discussion, January, web-site: http://www.trump.de/magic-squares. 8. W. WALKINGTON (2017), Online discussion, January. For more details: a. https://carresmagiques.blogspot.com.br/2017/01/area-magic-squares-and-tori-of-order-3.html b. https://carresmagiques.blogspot.com.br/2017/01/area-magic-squares-of-order-6.html c. http://www.primepuzzles.net/puzzles/puzz_865.htm 9. H. WHITE (2016), SODLS Construction Methods, http://budshaw.ca/addenda/SODLSmethods.html, 10. L. ZHU (1984), Orthogonal Diagonal Latin Squares of Order Fourteen, J. Austral. Math. Soc. (Series A), 36, 1-3. ___________________________________ 34
© Copyright 2026 Paperzz