Given Segment Addition Postulate Defn of Segment Bisector Defn of Midpoint Defn of Defn of Right Angles Defn of Perpendicular Lines Angle Addition Postulate Defn of Angle Bisector Defn of Complementary Angles Defn of Supplementary Angles Angles Supp to Same Angle are Angles Comp to Same Angle Definition of a Linear Pair Linear Pairs are Supp Angles Vertical Angles are Angles Add Property Subtraction Property 1. Given: PR = QS Prove : PQ = RS P Q Statement R Mult Property Divide Property Distribute Property Reflexive Property Symmetric Property Transitive Property Substitution Property Simplify S Reasons 1. PR = QS 1. 2. PQ + QR = PR 2. 3. QR + RS = QS 3. 4. PQ + QR = QR + RS 4. 5. PQ = RS 5. 2. Given : m AXC = m DYF, m 1=m 3 2=m C Statement AXC = m DYF, 1. 1=m 3. m AXC = m 1+m 2 3. 4. m DYF = m 3+m 4 4. 5. m 1+m 2=m 3+m 4 5. 6. m 3+m 2=m 3+m 4 6. 7. m 2=m 4 3 2. 7. Q P 3. Given : m 1= m 2 Prove: m PXR = m SXQ 2 1. m Statement 1= m 2 1. 2. m 3= m 3 2. 3. m 1+ m 3=m 4. PXR =m 1+m 3 4. SXQ = m 2+ m 3 5. 6. m PXR = m SXQ R 3 1 X 5. m 4 Y Reasons 2. m m 3 4 X 1. m F D 2 1 Prove : m E B A S Reasons 2+ m 3 3. 6. C A B D 4. Given : AB = CD , BD = DE Prove : AD = CE E Statement Reasons 1. 1. Given 2. Given 2. 3. Segment Addition Postulate 3. 4. Segment Addition Postulate 4. 5. Substitution Property 5. 6. Substitution Property 6. 5. Given: AD = 2AB + BC Prove: AB = CD A B Statement C Reasons 1. 1. Given 2. 2. 3. 3. Segment Addition Postulate 4. 4. Substitution Property 5. 5. Substitution Property 6. 6. Subtraction Property 7. 7. Subtraction Property Segment Addition Postulate D 6. Given: m Prove : m AEC = m AEB = m DEB DEC B A C E D Statement Reasons 1. 1. Given 2. 2. Angle Addition Postulate 3. 3. Angle Addition Postulate 4. 4. Substitution 5. 5. Subtraction T 7. Given: V S bisects m 2=m YXV, 3 1= m 3 1 R Prove: m W 2 4 X 4 Statement Reasons 1. 1. Given 2. 2. Definition of angle bisector 3. 3. Given 4. 4. Definition of an angle bisector 5. 5. Given Y 6. 6. Substitution Property 7. 7. Substitution Property M L 8. Given: m LON = m 2 3 O 1= C 3 Statement Reasons 1. 1. Given 2. 2. 3. 3. Definition 4. 4. 5. 5. Definition 6. m LON = m 1+ of bisector of bisector 6. 2 7. 7.Angle Addition postulate 8. 8.Substiution property 9. m 1+ 1=m 3+ 4 9. 10. m 1+ 1=m 3+ 3 10. 11. 2m 12. m 1= 2 m 1= m D DCF 1 Prove: E F N 3 3 11. 12. Division property 4 C B 9. Given: m BAC + m Prove: m BAC =m D DAT = 90 A CAD T Statement 1. 1. Given 2. 2. Given 3. 3. Def. of Perpendicular Lines 4. 4. Angle Addition Postulate 5. m CAT = 90 5. 6. 6.Substitution 7. 7.Substitution 8. m 10. Given: Prove: Reasons 7 1 CAD = m BAC 8. 6 4 1 8 Statement 2 7 3 4 6 5 Reasons D M A B 11. Given: M is the midpoint of X is the midpoint of AM = CX X C Prove: MB = XD Statement Reasons 3 12. Given: 1 and 2 form a linear pair m 2 + m 3 +m 4 =180 Prove: m 1=m 3 +m 4 1 Statement 2 4 Reasons 13. Given: RS TV Prove: RT SV R S V T Statement Reasons D 14. Given: , AC = KL A Prove: CB + LT = KT K Statement C L Reasons B T
© Copyright 2026 Paperzz