Properties of Logarithms Here are the properties that hold for logarithms: 1) log b m + log b n = log b mn 2) log b m − log b n = log b 3) x log b m = log b (m x ) 4) loga b = where b > 0 b ≠1, m, n >0 m n where b > 0 b ≠1, m, n >0 where b > 0 b ≠1, m >0 log m b log m a Problems: 1) Simplify or express as a single logarithm: a) ln e4 b) log 4 − log 3 + log π + 3log r 2) On the same set of axes graph y = 3x and y = log 3 x c) 101+ 2 log x 3) Graph y = log x . 4) Solve: a) log 4 (2x + 1) − log 4 (x − 2) = 1 b) log 2 (x 2 + 8) = log 2 x + log 2 6 5) Express y in terms of x: b) 1 ln y = (ln 4 + ln x) 3 c) ln y – ln x = 2 ln 7 d) log 3 ( x ) = log 3 ( y ) − 2 f) log ( yx ) = 9 a) log y = 2 log x e) ln 1 = −5x y 6) Write each expression as a single log of a single argument. a) log 5 12 − log 5 3 c) log 2 225 − log 2 5 + log 2 3 e) 4 log b (x 2 y) + 3 log b (y 2 ) + log b 2 b) ln(6) + ln(5) + ln(4) d) 3 log 4 5 − log 4 9 f) ln(16) – ln(2x) + 3lnx – 2ln2 7) If a = log(9), b = log(35), and c = log(2), rewrite log(2520) in terms of a, b, and c. 8) Solve the following by taking the log (base 10) of each side. a) 2x = 3 9) If f(x) = k log 5 x , where k is constant, then f(5) – f(25) = ? b) e 2x = 25 c) 3(0.4)x = 8 10) a5 32 If log 2 b = log 3 and log 3 a = log 2 , find the values of a and b. 81 b 11) Given log 5 = a, log 3 = b, and 3x +2 = 45, solve for x in terms of a and b. 12) If log 2 2 a = 2 a (a > 0), solve for a. 4 13) Circle all the following that are correct: a) d) b) e) c) f) g) h) j) k) m) n) p) q) t) u) w) x) i) l) o) r) s) v) 14) Given log 2 = a , log 3 = b , and log 7 = c , find log(1i2i3i4i5i6i7i8i9i10) in terms of a, b, and c. 15) If xy = 8 , find the value of 3log 2 x + 3log 2 y . 16) Let f (x) = 3x . Find f −1 (1) . 17) State the domain and range of y = log 5 ( 3 ) x−6 . ⎛ b⎞ 18) Given: log 3 ⎜ ⎟ = log 5 5a 2 and log 3 b = log 5 ( 625a ) , find the values of a and b. ⎝ 9⎠ ( ) 19) Evaluate. Remember, do NOT use a calculator. ⎛ 45 8 ⎞ a) log 2 ⎜ ⎟ ⎝ 2 ⎠ c) 34 log 3 5 d) b) log 2 56 − log 8 343 log 7 16 1 log 7 16 20) Express as one logarithm: a) 21) ( ) ( ) 2 log xy 3 − 3log x 2 y 2 + log ( ) x 2 y6 b) ⎛ 1⎞ 1 2 log1/b y 2 + log b y 4 − log b ⎜ ⎟ ⎝ y⎠ 6 3 ( ) ( ) Evaluate (you may use a calculator). a) log 5 45 b) log 2 0.45 22) Given log 2 3 = a and log 9 7 = b , find log 2 c) 3 log0.4 3 7 in terms of a and b. 2 23) Find all solutions for x. Be sure to check your answer: 3log9 (x +1) = x − 1 24) Write as a single logarithm, or number, with no coefficient before the log: ( ) a) 4 loga x 5 y − loga x 2 ( )( b) log x y 4 log y x 4 ) ( ) c) ( log x y ) log y x e) d) log b y 6 + 2 log b x1/3 − log log 5 x log 3 x10 + log 5 a 2 log 3 a 4 25) Use these values to find the values for the logarithms given below. log b k = 3.25 log b m = −0.233 log b n = 1.08 a) log b k 3 n −5 ⎛ k ⎞ b) log b ⎜ ⎝ mn ⎟⎠ c) log k b d) ( log k m ) log b k 2 ( 26) Give the following logarithm values: log b a = 0.25193 log b c = 1.43068 a) Find logc b ⎛ 1⎞ b) Find log b ⎜ 2 ⎟ ⎝d ⎠ ) log b d = −1 ⎛ ac ⎞ c) Find log b ⎜ ⎟ ⎝ d⎠ b y 28) Given a = log 3 and b = log 5: ⎛ 2⎞ a) Find log ⎜ ⎟ in terms of a and b. ⎝ 3⎠ b) Find log 6 72 in terms of a and b. 29) Given log 36 2 = a , find each of the following in terms of a: a) log 36 3 b) log 36 18 c) log 36 12 d) log 36 96 e) log 36 f) log 3 12 g) log 2 12 h) log 3 2 i) log 9 8 b) (log 3 x)2 + log 3 x 2 + 1 = 0 9 8 30) Solve for x. a) log12 (log 9 (log 5 (log 2 32))) = x
© Copyright 2026 Paperzz