Math 2204 Multivariable Calculus – Chapter 12: Vectors and the Geometry of Sec. 12.6: Cylinders and Quadratic Surfaces I. Review of Conic Sections A. Parabolas y = ±x 2 or x = ±y 2 B. Ellipses x 2 y2 + =1 a2 b2 C. Hyperbolas If a=b, then we have a circle. x 2 y2 y2 x 2 − = 1 − =1 or a2 b2 a2 b2 II. Cylinders A. A cylinder is the surface composed of all the lines (rulings) that lie parallel to a given line in space and pass through a given plane curve (a generating curve). B. An equation in any two Cartesian coordinates defines a cylinder parallel to the axis of the third (unrestricted) coordinate. C. Examples 1. Graph y=x2. Runs along: Coordinate Plane Trace xy (z = 0) xz (y = 0) yz (x = 0) z=k y=k x=k 2. Graph 9y2+z2=16. Coordinate Plane Runs along: Trace xy (z = 0) y 2 = 169 ⇒ y = ± 43 ⇒ lines xz (y = 0) z 2 = 16 ⇒ z = ±4 ⇒ lines yz (x = 0) 9y 2 + z 2 = 16 ⇒ ellipse x=k III. Quadratic Surfaces (See p. 641 for pictures) A. A quadratic surface is the graph in space of a second-degree equation in x, y, and z. B. Quadratic surfaces are the 3D counter part of conic sections in 2D. See page 655. C. Types 1. Ellipsoid x2 y2 z2 + + =1 a 2 b2 c 2 a. all variables are squared, all coefficients are positive b. All three traces are ellipses. c. If any two of the semiaxes revolution. d. If a, b, and c are equal, the surface is an ellipsoid of a=b=c, we have a sphere. e. Example Sketch 9x 2 + 4y 2 + 36z 2 = 36 Coordinate Plane xy (z = 0) xz (y = 0) yz (x = 0) Trace 1 4 x 2 + 19 y 2 = 1 ⇒ ellipse 1 4 x 2 + z 2 = 1 ⇒ ellipse 1 9 y 2 + z 2 = 1 ⇒ ellipse Runs along: 2. Elliptic Paraboloid z x2 y2 = + , c a 2 b2 x z2 y2 = + , a c 2 b2 y x2 z2 = + b a2 c2 a. One variable is linear, coefficients for the two squared terms are the same sign b. The variable raised to the first power indicates the axis. c. For the first formula, 1) horizontal traces are ellipses; vertical traces are parabolas. 2) If a=b, then we have a circular paraboloid. d. Similar for other two formulas. e. Example Sketch y = x 2 + 4z 2 Coordinate Plane Runs along: Trace xy (z = 0) y = x 2 ⇒ parabola xz (y = 0) x 2 ≠ −4z 2 ⇒ No graph yz (x = 0) y = 4z 2 ⇒ parabola y=k>0 y=k<0 3. Elliptic Cone x2 y2 z2 + − = 0, a 2 b2 c 2 x2 y2 z2 − − = 0, a 2 b2 c 2 x2 y2 z2 − + =0 a 2 b2 c 2 a. all variables are squared, 1 or 2 negative coefficients, RHS=0 in standard form b. For the first formula, horizontal traces are ellipses; vertical traces in the planes x=k and y=k are hyperbolas if k ≠ 0, but are pairs of lines if k=0. Similar for other two formulas. The axis of symmetry goes with the term on the left of the equals in the formulas given. c. Example Sketch x 2 = 4y 2 + 9z 2 Coordinate Plane Runs along: Trace xy (z = 0) x = ±2y ⇒ lines xz (y = 0) x = ±3z ⇒ lines yz (x = 0) 0 = 4y 2 + 9z 2 ⇒ pt(y, z) = (0,0) x=k k 2 = 4y 2 + 9z 2 ⇒ ellipses 4. Hyperboloid of One Sheet x2 y2 z2 + − = 1, a 2 b2 c 2 z2 y2 x2 + − = 1, c 2 b2 a 2 x2 z2 y2 + − =1 a 2 c 2 b2 a. all variables are squared, 1 negative coefficient, RHS=1 in standard form b. For the first formula, horizontal traces are ellipses; vertical traces are hyperbolas. The axis of symmetry goes with the variable of negative coefficient. Similar for other two formulas. c. Example Sketch 9x 2 − 4y 2 + 36z 2 = 36 Coordinate Plane Trace xy (z = 0) 9x 2 − 4y 2 = 36 ⇒ hyperbola xz (y = 0) 9x 2 + 36z 2 = 36 ⇒ ellipse yz (x = 0) −4y 2 + 36z 2 = 36 ⇒ hyperbola y=k 9x 2 + 36z 2 = 36 + 4k 2 ⇒ ellipses Runs along: 5. Hyperboloid of Two Sheets x2 y2 z2 z2 y2 x2 x2 z2 y2 − 2 − 2 + 2 = 1, − 2 − 2 + 2 = 1, − 2 − 2 + 2 = 1 a b c c b a a c b a. all variables are squared, 2 negative coefficients, RHS=1 in standard form b. For the first formula, horizontal traces in z=k are ellipses if k>c or k<-c; vertical traces are hyperbolas. The two minus signs indicate two sheets. Similar for other two formulas. The axis of symmetry goes with the positive coefficient. c. Example Sketch −9x 2 − 4y 2 + 36z 2 = 36 Coordinate Plane Runs along: Trace xy (z = 0) −9x 2 − 4y 2 = 36 ⇒ no graph xz (y = 0) −9x 2 + 36z 2 = 36 ⇒ hyperbola yz (x = 0) −4y 2 + 36z 2 = 36 ⇒ hyperbola z=k k 2 < 1 (−1 < k < 1) k 2 > 1 (k < −1 or k > 1) k 2 = 1 (k = ±1) −9x 2 − 4y 2 = 36 − 36k 2 ⇒ 9x 2 + 4y 2 = 36k 2 − 36 9x 2 + 4y 2 = 36k 2 − 36 < 0 ⇒ No graph 9x 2 + 4y 2 = 36k 2 − 36 > 0 ⇒ ellipses 9x 2 + 4y 2 = 36k 2 − 36 = 0 ⇒ pt(x, y) = (0,0) 6. Hyperbolic Paraboloid z x2 y2 = − , c a 2 b2 z y2 x2 = − c b2 a 2 a. One variable is linear, coefficients for two squared terms are the different signs b. Horizontal traces are hyperbolas; vertical traces are parabolas. There are other forms. (See HW p. 642. k & l) c. Example Sketch z = −x 2 + y 2 Coordinate Plane Runs along: Trace xy (z = 0) y = ±x ⇒ lines xz (y = 0) z = −x 2 ⇒ parabola, opens downward yz (x = 0) z = y 2 ⇒ parabola, opens upward z=k>0 −x 2 + y 2 = k > 0 ⇒ hyperbola, opens along y z=k<0 −x 2 + y 2 = k < 0 ⇒ x 2 − y 2 = k > 0 ⇒ hyperbola, opens along x D. Extra Example: 1. Sketch z = 4x 2 + y 2 − 2y Coordinate Plane Runs along: Trace xy (z = 0) xz (y = 0) yz (x = 0) z=k> z=k< 2. Identify each of the following surfaces: a. 4x 2 + 4y 2 + z 2 − 1 = 0 b. −4x 2 + y 2 − 2z 2 = 0 c. x 2 + 6x − y 2 − z 2 = 0
© Copyright 2026 Paperzz