5.4 Multiple-Angle Identities Name: ________________ Objectives: Students will be able to apply the double-angle identities, power-reducing identities, and half-angle identities. DOUBLE ANGLE IDENTITIES sin2θ = 2sinθcosθ cos2θ = cos2θ - sin2θ cos2θ = 2cos2θ - 1 cos2θ = 1 - 2sin2θ tan2θ = 2tanθ 1 - tan2θ Dec 32:50 PM HALF-ANGLE IDENTITIES sin(θ/2) = ± 1 - cosθ 2 cos(θ/2) = ± 1 + cosθ 2 tan(θ/2) = ± 1 - cosθ = 1 - cosθ = sinθ 1 + cosθ sinθ 1 + cosθ Dec 33:04 PM 1 Power-Reducing Identities sin2x = 1 - cos2x 2 cos2x = 1 + cos2x 2 tan2x = 1 - cos2x 1 + cos2x Dec 61:18 PM Examples Use the appropriate sum or difference identity to prove the double-angle identity. 1.) cos2u = 2cos2u - 1 2.) tan2u = 2tanu 1 - tan2u Dec 61:08 PM 2 Examples Find all solutions to the equation in the interval [0,2π]. 3.) cos2x = cosx 4.) cos2x + cosx = cos2x Dec 61:11 PM 5.) Write the expression as involving sinθ and cosθ. sin3θ + cos2θ Dec 61:12 PM 3 Prove the identities. 6.) cos6x = 2cos23x - 1 7.) sin3x = sinx(3 - 4sin2x) Dec 61:14 PM 8.) Solve algebraically for exact solutions in the interval [0,2π). Use your graphing calculator to support your algebraic work. sin3x + cos2x = 0 Dec 61:15 PM 4 Use half-angle identities to find an exact value without a calculator. 10.) sin(5π/12) 11.) tan195o Dec 61:16 PM Use power-reducing identities to prove the identity. 12.) cos3x = (1/2)cosx(1 + cos2x) 13.) sin32x = (1/2)sin2x(1 - cos4x) Dec 61:20 PM 5 Assignment: 1 - 41 odd Dec 61:22 PM 6
© Copyright 2026 Paperzz